These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 930122)

  • 21. The degradation of 1-phenylalkanes by an oil-degrading strain of Acinetobacter lwoffi.
    Amund OO; Higgins IJ
    Antonie Van Leeuwenhoek; 1985; 51(1):45-56. PubMed ID: 4004202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1.
    Maeng JH; Sakai Y; Tani Y; Kato N
    J Bacteriol; 1996 Jul; 178(13):3695-700. PubMed ID: 8682768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans.
    Lal B; Khanna S
    J Appl Bacteriol; 1996 Oct; 81(4):355-62. PubMed ID: 8896350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus.
    Müller R; Asperger O; Kleber HP
    Biomed Biochim Acta; 1989; 48(4):243-54. PubMed ID: 2546537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial assimilation of hydrocarbons. I. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp.
    Kennedy RS; Finnerty WR
    Arch Microbiol; 1975; 102(2):75-83. PubMed ID: 163624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of oxygen limitation on the content of n-hexadecane-inducible cytochrome P-450 in Acinetobacter calcoaceticus strain EB 104.
    Asperger O; Sharychev AA; Matyashova RN; Losinov AB; Kleber HP
    J Basic Microbiol; 1986; 26(10):571-6. PubMed ID: 3585713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases.
    Throne-Holst M; Markussen S; Winnberg A; Ellingsen TE; Kotlar HK; Zotchev SB
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):353-60. PubMed ID: 16520925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism of monofluorobenzoates by Acinetobacter calcoaceticus N.C.I.B. 8250. Formation of monofluorocatechols.
    Clarke KF; Callely AG; Livingstone A; Fewson CA
    Biochim Biophys Acta; 1975 Oct; 404(2):169-79. PubMed ID: 1182155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46.
    Bihari Z; Pettkó-Szandtner A; Csanádi G; Balázs M; Bartos P; Kesseru P; Kiss I; Mécs I
    Z Naturforsch C J Biosci; 2007; 62(3-4):285-95. PubMed ID: 17542497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains.
    Sun JQ; Xu L; Tang YQ; Chen FM; Wu XL
    Bioresour Technol; 2012 Nov; 123():664-8. PubMed ID: 22939600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of alkyl and aryl carbonates. Microbial degradation.
    Andreoni V; Baggi G; Bernasconi S; Foglieni C
    Appl Microbiol Biotechnol; 1990 Jan; 32(4):414-7. PubMed ID: 1366389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CYP116B5: a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes.
    Minerdi D; Sadeghi SJ; Di Nardo G; Rua F; Castrignanò S; Allegra P; Gilardi G
    Mol Microbiol; 2015 Feb; 95(3):539-54. PubMed ID: 25425282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of n-alkanes by Cladosporium resinae.
    Walker JD; Cooney JJ
    Can J Microbiol; 1973 Oct; 19(10):1325-30. PubMed ID: 4587094
    [No Abstract]   [Full Text] [Related]  

  • 34. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization.
    Kothari A; Charrier M; Wu YW; Malfatti S; Zhou CE; Singer SW; Dugan L; Mukhopadhyay A
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27664055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Utilization of 3-chlorobenzoic acid by Acinetobacter calcoaceticus].
    Zaitsev GM; Baskunov BP
    Mikrobiologiia; 1985; 54(2):203-8. PubMed ID: 4010553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of xcpR encoding a subunit of the general secretory pathway necessary for dodecane degradation in Acinetobacter calcoaceticus ADP1.
    Parche S; Geissdörfer W; Hillen W
    J Bacteriol; 1997 Jul; 179(14):4631-4. PubMed ID: 9226277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus.
    Di Cello F; Pepi M; Baldi F; Fani R
    Res Microbiol; 1997; 148(3):237-49. PubMed ID: 9765804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments.
    Rocha LL; Colares GB; Angelim AL; Grangeiro TB; Melo VM
    Mar Pollut Bull; 2013 Nov; 76(1-2):214-9. PubMed ID: 24050127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of colloidal iron on the respiration of a species of the genus Acinetobacter.
    Rae IC; Celo JS
    Appl Microbiol; 1975 Jun; 29(6):837-40. PubMed ID: 239632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Degradation of hydrocarbons in the presence of other organic substances by bacteria isolated from seawater].
    Le Petit J; Tagger S
    Can J Microbiol; 1976 Nov; 22(11):1654-7. PubMed ID: 974913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.