These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9301331)

  • 1. Archaeal introns: splicing, intercellular mobility and evolution.
    Lykke-Andersen J; Aagaard C; Semionenkov M; Garrett RA
    Trends Biochem Sci; 1997 Sep; 22(9):326-31. PubMed ID: 9301331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales.
    Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A
    Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing.
    Kjems J; Garrett RA
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):439-43. PubMed ID: 1899138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications.
    Marck C; Grosjean H
    RNA; 2003 Dec; 9(12):1516-31. PubMed ID: 14624007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain.
    Fujishima K; Sugahara J; Tomita M; Kanai A
    Mol Biol Evol; 2010 Oct; 27(10):2233-43. PubMed ID: 20430862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental confirmation of a whole set of tRNA molecules in two archaeal species.
    Watanabe Y; Kawarabayasi Y
    Int J Mol Sci; 2015 Jan; 16(1):2187-203. PubMed ID: 25608653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history.
    Lykke-Andersen J; Garrett RA
    EMBO J; 1997 Oct; 16(20):6290-300. PubMed ID: 9321408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The natural history of group I introns.
    Haugen P; Simon DM; Bhattacharya D
    Trends Genet; 2005 Feb; 21(2):111-9. PubMed ID: 15661357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level.
    Sugahara J; Yachie N; Sekine Y; Soma A; Matsui M; Tomita M; Kanai A
    In Silico Biol; 2006; 6(5):411-8. PubMed ID: 17274770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions.
    Lykke-Andersen J; Garrett RA
    J Mol Biol; 1994 Nov; 243(5):846-55. PubMed ID: 7966305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and mutational analysis of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728: catalytic mechanism of tRNA intron-splicing endonucleases.
    Kim YK; Mizutani K; Rhee KH; Nam KH; Lee WH; Lee EH; Kim EE; Park SY; Hwang KY
    J Bacteriol; 2007 Nov; 189(22):8339-46. PubMed ID: 17827289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs.
    Sugahara J; Yachie N; Arakawa K; Tomita M
    RNA; 2007 May; 13(5):671-81. PubMed ID: 17369313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo processing of an intron-containing archael tRNA.
    Nieuwlandt DT; Carr MB; Daniels CJ
    Mol Microbiol; 1993 Apr; 8(1):93-9. PubMed ID: 7684487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group I introns are widespread in archaea.
    Nawrocki EP; Jones TA; Eddy SR
    Nucleic Acids Res; 2018 Sep; 46(15):7970-7976. PubMed ID: 29788499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium Desulfurococcus mobilis.
    Kjems J; Jensen J; Olesen T; Garrett RA
    Can J Microbiol; 1989 Jan; 35(1):210-4. PubMed ID: 2470485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splicing of intron-containing tRNATrp by the archaeon Haloferax volcanii occurs independent of mature tRNA structure.
    Armbruster DW; Daniels CJ
    J Biol Chem; 1997 Aug; 272(32):19758-62. PubMed ID: 9242634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing.
    Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A
    Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disrupted tRNA gene diversity and possible evolutionary scenarios.
    Sugahara J; Fujishima K; Morita K; Tomita M; Kanai A
    J Mol Evol; 2009 Nov; 69(5):497-504. PubMed ID: 19826747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity.
    Fujishima K; Sugahara J; Miller CS; Baker BJ; Di Giulio M; Takesue K; Sato A; Tomita M; Banfield JF; Kanai A
    Nucleic Acids Res; 2011 Dec; 39(22):9695-704. PubMed ID: 21880595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of permuted and recently split transfer RNAs in Archaea.
    Chan PP; Cozen AE; Lowe TM
    Genome Biol; 2011; 12(4):R38. PubMed ID: 21489296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.