These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 9301475)

  • 1. Effect of heptanol on the short circuit currents of cornea and ciliary body demonstrates rate limiting role of heterocellular gap junctions in active ciliary body transport.
    Wolosin JM; Candia OA; Peterson-Yantorno K; Civan MM; Shi XP
    Exp Eye Res; 1997 Jun; 64(6):945-52. PubMed ID: 9301475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adreno-cholinergic modulation of junctional communications between the pigmented and nonpigmented layers of the ciliary body epithelium.
    Shi XP; Zamudio AC; Candia OA; Wolosin JM
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1037-46. PubMed ID: 8631619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation.
    Kong CW; Li KK; To CH
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP inhibits transepithelial chloride secretion across bovine ciliary body/epithelium.
    Do CW; Kong CW; To CH
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3638-43. PubMed ID: 15452071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride secretion by bovine ciliary epithelium: a model of aqueous humor formation.
    Do CW; To CH
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1853-60. PubMed ID: 10845609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of NaKCl cotransport in blood-to-aqueous chloride fluxes across rabbit ciliary epithelium.
    Crook RB; Takahashi K; Mead A; Dunn JJ; Sears ML
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2574-83. PubMed ID: 10937569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous fluid transport across isolated rabbit and bovine ciliary body preparations.
    Candia OA; To CH; Gerometta RM; Zamudio AC
    Invest Ophthalmol Vis Sci; 2005 Mar; 46(3):939-47. PubMed ID: 15728551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microprobe analysis of ouabain-exposed ciliary epithelium: PE-NPE cell couplets form the functional units.
    McLaughlin CW; Zellhuber-McMillan S; Macknight AD; Civan MM
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1376-89. PubMed ID: 14761890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cAMP on porcine ciliary transepithelial short-circuit current, sodium transport, and chloride transport.
    Ni Y; Wu R; Xu W; Maecke H; Flammer J; Haefliger IO
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2065-74. PubMed ID: 16639017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap junctions in rabbit corneal epithelium: limited permeability and inhibition by cAMP.
    Wolosin JM
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C857-64. PubMed ID: 1659212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connexin distribution in the rabbit and rat ciliary body. A case for heterotypic epithelial gap junctions.
    Wolosin JM; Schütte M; Chen S
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):341-8. PubMed ID: 9040466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swelling-activated Cl- channels support Cl- secretion by bovine ciliary epithelium.
    Do CW; Peterson-Yantorno K; Civan MM
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2576-82. PubMed ID: 16723473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholaminergic regulation of Na-K-Cl cotransport in pigmented ciliary epithelium: differences between PE and NPE.
    Hochgesand DH; Dunn JJ; Crook RB
    Exp Eye Res; 2001 Jan; 72(1):1-12. PubMed ID: 11133177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of n-alkanols on the hormonal induction of maturation in follicle-enclosed Xenopus oocytes: implications for gap junctional transport of maturation-inducing steroid.
    Patiño R; Purkiss RT
    Gen Comp Endocrinol; 1993 Aug; 91(2):189-98. PubMed ID: 8405904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunolocalization of the Na-K-Cl cotransporter in bovine ciliary epithelium.
    Dunn JJ; Lytle C; Crook RB
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):343-53. PubMed ID: 11157865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonpigmented cells of the rabbit ciliary body epithelium. Tissue culture and voltage-gated currents.
    Cilluffo MC; Cohen BN; Fain GL
    Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1619-29. PubMed ID: 1707862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of HCO3- on cell composition of rabbit ciliary epithelium: a new model for aqueous humor secretion.
    McLaughlin CW; Peart D; Purves RD; Carré DA; Macknight AD; Civan MM
    Invest Ophthalmol Vis Sci; 1998 Aug; 39(9):1631-41. PubMed ID: 9699552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP-dependent stimulation of basolateral K(+)conductance in the rabbit conjunctival epithelium.
    Turner HC; Alvarez LJ; Candia OA
    Exp Eye Res; 2000 Mar; 70(3):295-305. PubMed ID: 10712816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of timolol on the active transport across the ciliary epithelium.
    Nagasubramanian S; Poinoosawmy D
    Trans Ophthalmol Soc U K (1962); 1986; 105 ( Pt 6)():665-6. PubMed ID: 3477895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.