These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9302324)

  • 1. Algae or protozoa: phylogenetic position of euglenophytes and dinoflagellates as inferred from mitochondrial sequences.
    Inagaki Y; Hayashi-Ishimaru Y; Ehara M; Igarashi I; Ohama T
    J Mol Evol; 1997 Sep; 45(3):295-300. PubMed ID: 9302324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deviant mitochondrial genetic code in prymnesiophytes (yellow-algae): UGA codon for tryptophan.
    Hayashi-Ishimaru Y; Ehara M; Inagaki Y; Ohama T
    Curr Genet; 1997 Oct; 32(4):296-9. PubMed ID: 9342410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences.
    Maslov DA; Yasuhira S; Simpson L
    Protist; 1999 Mar; 150(1):33-42. PubMed ID: 10724517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytochrome oxidase subunit 1 gene (cox1) from the dinoflagellate, Crypthecodinium cohnii.
    Norman JE; Gray MW
    FEBS Lett; 1997 Aug; 413(2):333-8. PubMed ID: 9280308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directionally evolving genetic code: the UGA codon from stop to tryptophan in mitochondria.
    Inagaki Y; Ehara M; Watanabe KI; Hayashi-Ishimaru Y; Ohama T
    J Mol Evol; 1998 Oct; 47(4):378-84. PubMed ID: 9767683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are prorocentroid dinoflagellates monophyletic? A study of 25 species based on nuclear and mitochondrial genes.
    Murray S; Ip CL; Moore R; Nagahama Y; Fukuyo Y
    Protist; 2009 May; 160(2):245-64. PubMed ID: 19217347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a deviant mitochondrial genetic code in yellow-green algae as a landmark for segregating members within the phylum.
    Ehara M; Hayashi-Ishimaru Y; Inagaki Y; Ohama T
    J Mol Evol; 1997 Aug; 45(2):119-24. PubMed ID: 9236270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial cob and cox1 genes and editing of the corresponding mRNAs in Dinophysis acuminata from Narragansett Bay, with special reference to the phylogenetic position of the genus Dinophysis.
    Zhang H; Bhattacharya D; Maranda L; Lin S
    Appl Environ Microbiol; 2008 Mar; 74(5):1546-54. PubMed ID: 18165361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages.
    Imanian B; Keeling PJ
    BMC Evol Biol; 2007 Sep; 7():172. PubMed ID: 17892581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes.
    Slamovits CH; Saldarriaga JF; Larocque A; Keeling PJ
    J Mol Biol; 2007 Sep; 372(2):356-68. PubMed ID: 17655860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear, mitochondrial and plastid gene phylogenies of Dinophysis miles (Dinophyceae): evidence of variable types of chloroplasts.
    Qiu D; Huang L; Liu S; Lin S
    PLoS One; 2011; 6(12):e29398. PubMed ID: 22242118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte.
    Takishita K; Ishida K; Maruyama T
    Protist; 2003 Oct; 154(3-4):443-54. PubMed ID: 14658500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution.
    Ehara M; Inagaki Y; Watanabe KI; Ohama T
    Curr Genet; 2000 Jan; 37(1):29-33. PubMed ID: 10672441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids.
    Fast NM; Kissinger JC; Roos DS; Keeling PJ
    Mol Biol Evol; 2001 Mar; 18(3):418-26. PubMed ID: 11230543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The mitochondrial genome of protists].
    Odintsova MS; Iurina NP
    Genetika; 2002 Jun; 38(6):773-88. PubMed ID: 12138776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 5 S rRNA gene is present in the mitochondrial genome of the protist Reclinomonas americana but is absent from red algal mitochondrial DNA.
    Lang BF; Goff LJ; Gray MW
    J Mol Biol; 1996 Sep; 261(5):407-13. PubMed ID: 8800209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-gene dinoflagellate phylogeny suggests monophyly of prorocentrales and a basal position for amphidinium and heterocapsa.
    Zhang H; Bhattacharya D; Lin S
    J Mol Evol; 2007 Oct; 65(4):463-74. PubMed ID: 17896067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids.
    Zhang Z; Green BR; Cavalier-Smith T
    J Mol Evol; 2000 Jul; 51(1):26-40. PubMed ID: 10903370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria.
    Jackson CJ; Norman JE; Schnare MN; Gray MW; Keeling PJ; Waller RF
    BMC Biol; 2007 Sep; 5():41. PubMed ID: 17897476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial genome of a tertiary endosymbiont retains genes for electron transport proteins.
    Imanian B; Carpenter KJ; Keeling PJ
    J Eukaryot Microbiol; 2007; 54(2):146-53. PubMed ID: 17403155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.