These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9302528)

  • 1. GABAA inhibition controls the calcium flows during NMDA-dependent epileptiform activity in human epileptogenic neocortex.
    Louvel J; Pumain R; Avoli M; Kurcewicz I; Devaux B; Chodkiewicz JP
    Epilepsy Res Suppl; 1996; 12():293-300. PubMed ID: 9302528
    [No Abstract]   [Full Text] [Related]  

  • 2. The balance between excitation and inhibition in dentate granule cells and its role in epilepsy.
    Mody I; Otis TS; Staley KJ; Köhr G
    Epilepsy Res Suppl; 1992; 9():331-9. PubMed ID: 1337447
    [No Abstract]   [Full Text] [Related]  

  • 3. N-methyl-D-aspartate-mediated responses in epileptic cortex in humans: an in-vitro study.
    Louvel J; Pumain R
    Epilepsy Res Suppl; 1992; 8():361-6; discussion 366-7. PubMed ID: 1329824
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.
    Tyzio R; Khalilov I; Represa A; Crepel V; Zilberter Y; Rheims S; Aniksztejn L; Cossart R; Nardou R; Mukhtarov M; Minlebaev M; Epsztein J; Milh M; Becq H; Jorquera I; Bulteau C; Fohlen M; Oliver V; Dulac O; Dorfmüller G; Delalande O; Ben-Ari Y; Khazipov R
    Ann Neurol; 2009 Aug; 66(2):209-18. PubMed ID: 19743469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective vulnerability to perforant path stimulation: role of NMDA and non-NMDA receptors.
    Penix LP; Thompson KW; Wasterlain CG
    Epilepsy Res Suppl; 1996; 12():63-73. PubMed ID: 9302504
    [No Abstract]   [Full Text] [Related]  

  • 6. [Current state of the problem of cortical inhibition].
    Serkov FN
    Fiziol Zh (1978); 1989; 35(6):101-10. PubMed ID: 2558911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model.
    Bush PC; Prince DA; Miller KD
    J Neurophysiol; 1999 Oct; 82(4):1748-58. PubMed ID: 10515964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA and non-NMDA synaptic currents in rat neocortex during early postnatal development.
    Hablitz JJ; Burgard EC
    Epilepsy Res Suppl; 1996; 12():45-52. PubMed ID: 9302502
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibitory and excitatory amino acid receptors, c-fos expression, and calcium-binding proteins in the brain of baboons (Papio hamadryas) that exhibit 'spontaneous' grand mal epilepsy.
    Ticku MK; Lee JC; Murk S; Mhatre MC; Story JL; Kagan-Hallet K; Luther JS; MacCluer JW; Leland MM; Eidelberg E
    Epilepsy Res Suppl; 1992; 9():141-9. PubMed ID: 1363039
    [No Abstract]   [Full Text] [Related]  

  • 10. Dorsal and ventral distribution of excitable and synaptic properties of neurons of the bed nucleus of the stria terminalis.
    Egli RE; Winder DG
    J Neurophysiol; 2003 Jul; 90(1):405-14. PubMed ID: 12649311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA/benzodiazepine receptors in human focal epilepsy.
    Olsen RW; Bureau M; Houser CR; Delgado-Escueta AV; Richards JG; Möhler H
    Epilepsy Res Suppl; 1992; 8():383-91. PubMed ID: 1329826
    [No Abstract]   [Full Text] [Related]  

  • 12. Seizure-triggering mechanisms in the kindling model of epilepsy: collapse of GABA-mediated inhibition and activation of NMDA receptors.
    Morimoto K
    Jpn J Psychiatry Neurol; 1989 Sep; 43(3):459-63. PubMed ID: 2560496
    [No Abstract]   [Full Text] [Related]  

  • 13. Loss of phase synchrony in an animal model of partial status epilepticus.
    Navarro V; Le Van Quyen M; Martinerie J; Rudrauf D; Baulac M; Menini C
    Neuroscience; 2007 Aug; 148(1):304-13. PubMed ID: 17629413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility.
    Whalley BJ; Constanti A
    Neuroscience; 2006 Jul; 140(3):939-56. PubMed ID: 16616427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperexcitability after focal lesions and transient ischemia in rat neocortex.
    Luhmann HJ; Mittmann T; Schmidt-Kastner R; Eysel UT; Mudrick-Donnon LA; Heinemann U
    Epilepsy Res Suppl; 1996; 12():119-28. PubMed ID: 9302510
    [No Abstract]   [Full Text] [Related]  

  • 16. Chronic epileptic foci induced by intracranial tetanus toxin.
    Jefferys JG
    Epilepsy Res Suppl; 1996; 12():111-7. PubMed ID: 9302509
    [No Abstract]   [Full Text] [Related]  

  • 17. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD
    Neuroscience; 2008 Jan; 151(2):403-9. PubMed ID: 18055124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immature neurons and GABA networks may contribute to epileptogenesis in pediatric cortical dysplasia.
    Cepeda C; André VM; Wu N; Yamazaki I; Uzgil B; Vinters HV; Levine MS; Mathern GW
    Epilepsia; 2007; 48 Suppl 5():79-85. PubMed ID: 17910585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active role of cortical inhibition in the development of generalized epilepsy with spike-and-wave discharges: evidence from electrophysiological, microiontophoretic and simulation studies.
    Kostopoulos G; Antoniadis G
    Epilepsy Res Suppl; 1992; 8():125-33. PubMed ID: 1329807
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of glutamate and aspartate in epileptogenesis; contribution of microdialysis studies in animal and man.
    Chapman AG; Elwes RD; Millan MH; Polkey CE; Meldrum BS
    Epilepsy Res Suppl; 1996; 12():239-46. PubMed ID: 9302522
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.