These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9302573)

  • 1. Arterial microvascularization and breast cancer colonization in bone.
    Yoneda T
    Histol Histopathol; 1997 Oct; 12(4):1145-9. PubMed ID: 9302573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk between cancer cells and bone microenvironment in bone metastasis.
    Yoneda T; Hiraga T
    Biochem Biophys Res Commun; 2005 Mar; 328(3):679-87. PubMed ID: 15694401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of bisphosphonates for the treatment of bone metastasis in experimental animal models.
    Yoneda T; Michigami T; Yi B; Williams PJ; Niewolna M; Hiraga T
    Cancer Treat Rev; 1999 Oct; 25(5):293-9. PubMed ID: 10544073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism and treatment of cancer metastasis to bone].
    Yoneda T
    Clin Calcium; 2005 Jul; 15(7):29-37. PubMed ID: 15995293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases.
    Siclari VA; Guise TA; Chirgwin JM
    Cancer Metastasis Rev; 2006 Dec; 25(4):621-33. PubMed ID: 17165131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumour progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem.
    Pluijm G; Löwik C; Papapoulos S
    Cancer Treat Rev; 2000 Feb; 26(1):11-27. PubMed ID: 10660489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone.
    Tamura D; Hiraga T; Myoui A; Yoshikawa H; Yoneda T
    Int J Oncol; 2008 Jul; 33(1):17-24. PubMed ID: 18575746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the glycosylation profile of the human breast cancer cell line, MDA-231, and a bone colonizing variant.
    Carcel-Trullols J; Stanley JS; Saha R; Shaaf S; Bendre MS; Monzavi-Karbassi B; Suva LJ; Kieber-Emmons T
    Int J Oncol; 2006 May; 28(5):1173-83. PubMed ID: 16596233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of tumor-bone interactions in osteolytic metastases.
    Chirgwin JM; Guise TA
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):159-78. PubMed ID: 11186331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer.
    Yi B; Williams PJ; Niewolna M; Wang Y; Yoneda T
    Cancer Res; 2002 Feb; 62(3):917-23. PubMed ID: 11830552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Clinical features of pathologically confirmed metastatic bone tumors--a report of 390 cases].
    Xu DL; Zhang XT; Wang GH; Li FB; Hu JY
    Ai Zheng; 2005 Nov; 24(11):1404-7. PubMed ID: 16552972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer.
    Hiraga T; Kizaka-Kondoh S; Hirota K; Hiraoka M; Yoneda T
    Cancer Res; 2007 May; 67(9):4157-63. PubMed ID: 17483326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer.
    Bobinac D; Marić I; Zoricić S; Spanjol J; Dordević G; Mustać E; Fuckar Z
    Croat Med J; 2005 Jun; 46(3):389-96. PubMed ID: 15861517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-beta enhances bone metastases in breast cancer.
    Hiraga T; Myoui A; Choi ME; Yoshikawa H; Yoneda T
    Cancer Res; 2006 Feb; 66(4):2067-73. PubMed ID: 16489006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta1 is the predominant isoform required for breast cancer cell outgrowth in bone.
    Mourskaia AA; Dong Z; Ng S; Banville M; Zwaagstra JC; O'Connor-McCourt MD; Siegel PM
    Oncogene; 2009 Feb; 28(7):1005-15. PubMed ID: 19079339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GnRH analogs reduce invasiveness of human breast cancer cells.
    von Alten J; Fister S; Schulz H; Viereck V; Frosch KH; Emons G; Gründker C
    Breast Cancer Res Treat; 2006 Nov; 100(1):13-21. PubMed ID: 16758121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone.
    Nemeth JA; Harb JF; Barroso U; He Z; Grignon DJ; Cher ML
    Cancer Res; 1999 Apr; 59(8):1987-93. PubMed ID: 10213511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of osteolytic bone metastases in breast carcinoma.
    Käkönen SM; Mundy GR
    Cancer; 2003 Feb; 97(3 Suppl):834-9. PubMed ID: 12548583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity.
    Keller ET; Brown J
    J Cell Biochem; 2004 Mar; 91(4):718-29. PubMed ID: 14991763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoactivin promotes breast cancer metastasis to bone.
    Rose AA; Pepin F; Russo C; Abou Khalil JE; Hallett M; Siegel PM
    Mol Cancer Res; 2007 Oct; 5(10):1001-14. PubMed ID: 17951401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.