These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 9303001)

  • 1. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution.
    Tjandra N; Omichinski JG; Gronenborn AM; Clore GM; Bax A
    Nat Struct Biol; 1997 Sep; 4(9):732-8. PubMed ID: 9303001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium.
    Tjandra N; Bax A
    Science; 1997 Nov; 278(5340):1111-4. PubMed ID: 9353189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of zinc finger orientations by residual dipolar coupling constants.
    Tsui V; Zhu L; Huang TH; Wright PE; Case DA
    J Biomol NMR; 2000 Jan; 16(1):9-21. PubMed ID: 10718608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure determination of the two DNA-binding domains in the Schizosaccharomyces pombe Abp1 protein by a combination of dipolar coupling and diffusion anisotropy restraints.
    Kikuchi J; Iwahara J; Kigawa T; Murakami Y; Okazaki T; Yokoyama S
    J Biomol NMR; 2002 Apr; 22(4):333-47. PubMed ID: 12018481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information.
    Clore GM; Gronenborn AM; Bax A
    J Magn Reson; 1998 Jul; 133(1):216-21. PubMed ID: 9654491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 15N-1H Residual dipolar coupling analysis of native and alkaline-K79A Saccharomyces cerevisiae cytochrome c.
    Assfalg M; Bertini I; Turano P; Mauk AG; Winkler JR; Gray HB
    Biophys J; 2003 Jun; 84(6):3917-23. PubMed ID: 12770897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Line narrowing in spectra of proteins dissolved in a dilute liquid crystalline phase by band-selective adiabatic decoupling: application to 1HN-15N residual dipolar coupling measurements.
    Vander Kooi CW; Kupce E; Zuiderweg ER; Pellecchia M
    J Biomol NMR; 1999 Dec; 15(4):335-8. PubMed ID: 10685341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical determination of nucleic acid magnetic susceptibility: importance for the study of dynamics by field-induced residual dipolar couplings.
    Bryce DL; Boisbouvier J; Bax A
    J Am Chem Soc; 2004 Sep; 126(35):10820-1. PubMed ID: 15339148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings.
    Padrta P; Stefl R; Králík L; Zídek L; Sklenár V
    J Biomol NMR; 2002 Sep; 24(1):1-14. PubMed ID: 12449414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MQ-hCN-based pulse sequences for the measurement of 13C1'-1H1', 13C1'-15N, 1H1'-15N, 13C1'-13C2', 1H1'-13C2',13C6/8-1H6/8, 13C6/8-15N, 1H6/8-15N, 13C6-13C5, 1H6-13C5 dipolar couplings in 13C, 15N-labeled DNA (and RNA).
    Yan J; Corpora T; Pradhan P; Bushweller JH
    J Biomol NMR; 2002 Jan; 22(1):9-20. PubMed ID: 11885985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination.
    Ottiger M; Delaglio F; Marquardt JL; Tjandra N; Bax A
    J Magn Reson; 1998 Oct; 134(2):365-9. PubMed ID: 9761712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy.
    Wu Z; Delaglio F; Tjandra N; Zhurkin VB; Bax A
    J Biomol NMR; 2003 Aug; 26(4):297-315. PubMed ID: 12815257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of natural abundance 15N-1H and 13C-1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments.
    Deepak HS; Joy A; Suryaprakash N
    Magn Reson Chem; 2006 May; 44(5):553-65. PubMed ID: 16534832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings.
    Al-Hashimi HM; Valafar H; Terrell M; Zartler ER; Eidsness MK; Prestegard JH
    J Magn Reson; 2000 Apr; 143(2):402-6. PubMed ID: 10729267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of bound water in the solution structure of a complex of the erythroid transcription factor GATA-1 with DNA.
    Clore GM; Bax A; Omichinski JG; Gronenborn AM
    Structure; 1994 Feb; 2(2):89-94. PubMed ID: 8081746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle.
    Cady SD; Goodman C; Tatko CD; DeGrado WF; Hong M
    J Am Chem Soc; 2007 May; 129(17):5719-29. PubMed ID: 17417850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.
    Damberger FF; Pelton JG; Harrison CJ; Nelson HC; Wemmer DE
    Protein Sci; 1994 Oct; 3(10):1806-21. PubMed ID: 7849597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13C-1H HSQC experiment of probe molecules aligned in thermotropic liquid crystals: sensitivity and resolution enhancement in the indirect dimension.
    Baishya B; Mavinkurve RG; Suryaprakash N
    J Magn Reson; 2007 Apr; 185(2):221-9. PubMed ID: 17223368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG.
    Kowalski K; Czolij R; King GF; Crossley M; Mackay JP
    J Biomol NMR; 1999 Mar; 13(3):249-62. PubMed ID: 10212985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.