BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 9303184)

  • 1. Comparative stability of eight different triple helices formed by differently modified DNA or RNA pyrimidine strands and a DNA hairpin.
    Morvan F; Imbach JL; Rayner B
    Antisense Nucleic Acid Drug Dev; 1997 Aug; 7(4):327-34. PubMed ID: 9303184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4'-Thio-RNA: synthesis of mixed base 4'-thio-oligoribonucleotides, nuclease resistance, and base pairing properties with complementary single and double strand.
    Leydier C; Bellon L; Barascut JL; Morvan F; Rayner B; Imbach JL
    Antisense Res Dev; 1995; 5(3):167-74. PubMed ID: 8785472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2'-hydroxyl effects.
    Wang S; Kool ET
    Biochemistry; 1995 Mar; 34(12):4125-32. PubMed ID: 7535100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the stability of DNA triplexes.
    Roberts RW; Crothers DM
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4320-5. PubMed ID: 8633063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets.
    Michel T; Debart F; Vasseur JJ; Geinguenaud F; Taillandier E
    J Biomol Struct Dyn; 2003 Dec; 21(3):435-45. PubMed ID: 14616038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition.
    Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F
    Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine.
    Rajeev KG; Jadhav VR; Ganesh KN
    Nucleic Acids Res; 1997 Nov; 25(21):4187-93. PubMed ID: 9336445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the third-strand orientation on the thermodynamic stability of the four-way DNA junction.
    Makube N; Klump HH
    Arch Biochem Biophys; 2001 Sep; 393(1):1-13. PubMed ID: 11516156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Antony T; Thomas T; Shirahata A; Thomas TJ
    Biochemistry; 1999 Aug; 38(33):10775-84. PubMed ID: 10451373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplex formation at physiological pH by oligonucleotides incorporating 5-Me-dC-(N4-spermine).
    Barawkar DA; Kumar VA; Ganesh KN
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1665-70. PubMed ID: 7811251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of stable triplexes between purine RNA and pyrimidine oligodeoxyxylonucleotides.
    Ivanov S; Alekseev Y; Bertrand JR; Malvy C; Gottikh MB
    Nucleic Acids Res; 2003 Jul; 31(14):4256-63. PubMed ID: 12853644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inability of RNA to form the i-motif: implications for triplex formation.
    Lacroix L; Mergny JL; Leroy JL; Hélène C
    Biochemistry; 1996 Jul; 35(26):8715-22. PubMed ID: 8679634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of DNA target sequence on triplex formation by oligo-2'-deoxy- and 2'-O-methylribonucleotides.
    Cassidy RA; Puri N; Miller PS
    Nucleic Acids Res; 2003 Jul; 31(14):4099-108. PubMed ID: 12853627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes.
    Booher MA; Wang S; Kool ET
    Biochemistry; 1994 Apr; 33(15):4645-51. PubMed ID: 8161521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities.
    Barawkar DA; Rajeev KG; Kumar VA; Ganesh KN
    Nucleic Acids Res; 1996 Apr; 24(7):1229-37. PubMed ID: 8614624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual thermal stability of RNA/[RP-PS]-DNA/RNA triplexes containing a homopurine DNA strand.
    Guga P; Boczkowska M; Janicka M; Maciaszek A; Kuberski S; Stec WJ
    Biophys J; 2007 Apr; 92(7):2507-15. PubMed ID: 17218459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.