These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 9303347)
1. Role of the pineal organ in the photoregulated hatching of the Atlantic halibut. Forsell J; Holmqvist B; Helvik JV; Ekström P Int J Dev Biol; 1997 Aug; 41(4):591-5. PubMed ID: 9303347 [TBL] [Abstract][Full Text] [Related]
2. The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L. Ostholm T; Brännäs E; van Veen T Cell Tissue Res; 1987 Sep; 249(3):641-6. PubMed ID: 2959366 [TBL] [Abstract][Full Text] [Related]
3. Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms. Korf B; Rollag MD; Korf HW Cell Tissue Res; 1989 Nov; 258(2):319-29. PubMed ID: 2531037 [TBL] [Abstract][Full Text] [Related]
4. Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Tamotsu S; Korf HW; Morita Y; Oksche A Cell Tissue Res; 1990 Nov; 262(2):205-16. PubMed ID: 2150185 [TBL] [Abstract][Full Text] [Related]
5. Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study. Meléndez-Ferro M; Villar-Cheda B; Abalo XM; Pérez-Costas E; Rodríguez-Muñoz R; Degrip WJ; Yáñez J; Rodicio MC; Anadón R J Comp Neurol; 2002 Jan; 442(3):250-65. PubMed ID: 11774340 [TBL] [Abstract][Full Text] [Related]
6. Serotonin and opsin immunoreactivities in the developing pineal organ of the three-spined stickleback, Gasterosteus aculeatus L. van Veen T; Ekström P; Nyberg L; Borg B; Vigh-Teichmann I; Vigh B Cell Tissue Res; 1984; 237(3):559-64. PubMed ID: 6237727 [TBL] [Abstract][Full Text] [Related]
7. Antibodies against retinal photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ in teleosts. Ekström P; Foster RG; Korf HW; Schalken JJ J Comp Neurol; 1987 Nov; 265(1):25-33. PubMed ID: 2826553 [TBL] [Abstract][Full Text] [Related]
8. Ontogenetic development of the pineal organ, parapineal organ, and retina of the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Development of photoreceptors. Ekström P; Borg B; van Veen T Cell Tissue Res; 1983; 233(3):593-609. PubMed ID: 6684991 [TBL] [Abstract][Full Text] [Related]
9. Expression of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts. Forsell J; Ekström P; Flamarique IN; Holmqvist B J Exp Biol; 2001 Jul; 204(Pt 14):2517-25. PubMed ID: 11511667 [TBL] [Abstract][Full Text] [Related]
10. Exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus). Eilertsen M; Drivenes O; Edvardsen RB; Bradley CA; Ebbesson LO; Helvik JV J Comp Neurol; 2014 Dec; 522(18):4003-22. PubMed ID: 25044160 [TBL] [Abstract][Full Text] [Related]
11. Molecular identification and developmental expression of UV and green opsin mRNAs in the pineal organ of the Atlantic halibut. Forsell J; Holmqvist B; Ekström P Brain Res Dev Brain Res; 2002 May; 136(1):51-62. PubMed ID: 12036517 [TBL] [Abstract][Full Text] [Related]
12. Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). Philp AR; Garcia-Fernandez JM; Soni BG; Lucas RJ; Bellingham J; Foster RG J Exp Biol; 2000 Jun; 203(Pt 12):1925-36. PubMed ID: 10821749 [TBL] [Abstract][Full Text] [Related]
13. Photic regulation of pineal function. Analogies between retinal and pineal photoreception. Meissl H Biol Cell; 1997 Dec; 89(9):549-54. PubMed ID: 9673006 [TBL] [Abstract][Full Text] [Related]
14. Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. Kasahara T; Okano T; Yoshikawa T; Yamazaki K; Fukada Y J Neurochem; 2000 Jul; 75(1):217-24. PubMed ID: 10854264 [TBL] [Abstract][Full Text] [Related]
15. Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail. Foster RG; Korf HW; Schalken JJ Cell Tissue Res; 1987 Apr; 248(1):161-7. PubMed ID: 2952278 [TBL] [Abstract][Full Text] [Related]
16. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395 [TBL] [Abstract][Full Text] [Related]
17. Development of rhythmic melatonin secretion from the pineal gland of embryonic mummichog (Fundulus heteroclitus). Roberts D; Okimoto DK; Parsons C; Straume M; Stetson MH J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):56-62. PubMed ID: 12589691 [TBL] [Abstract][Full Text] [Related]
18. The pineal organ as a folded retina: immunocytochemical localization of opsins. Vígh B; Röhlich P; Görcs T; Manzano e Silva MJ; Szél A; Fejér Z; Vígh-Teichmann I Biol Cell; 1998 Dec; 90(9):653-9. PubMed ID: 10085541 [TBL] [Abstract][Full Text] [Related]
19. Different types of pinealocytes as revealed by immunoelectron microscopy of anti-S-antigen and antiopsin binding sites in the pineal organ of toad, frog, hedgehog and bat. Vigh-Teichmann I; Vigh B; Gery I; van Veen T Exp Biol; 1986; 45(1):27-43. PubMed ID: 2937652 [TBL] [Abstract][Full Text] [Related]
20. Ultrastructure and opsin immunocytochemistry of the pineal complex of the larval Arctic charr Salvelinus alpinus: a comparison with the retina. Vigh-Teichmann I; Ali MA; Szél A; Vigh B J Pineal Res; 1991; 10(4):196-209. PubMed ID: 1833524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]