These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9303377)

  • 1. Influence of electric fields and pH on biofilm structure as related to the bioelectric effect.
    Stoodley P; deBeer D; Lappin-Scott HM
    Antimicrob Agents Chemother; 1997 Sep; 41(9):1876-9. PubMed ID: 9303377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing reproducible biofilms with respect to structure and viable cell counts.
    Jackson G; Beyenal H; Rees WM; Lewandowski Z
    J Microbiol Methods; 2001 Oct; 47(1):1-10. PubMed ID: 11566221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.
    Miyanaga K; Terashi R; Kawai H; Unno H; Tanji Y
    Biotechnol Bioeng; 2007 Jul; 97(4):850-7. PubMed ID: 17163515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial biofilms and the bioelectric effect.
    Wellman N; Fortun SM; McLeod BR
    Antimicrob Agents Chemother; 1996 Sep; 40(9):2012-4. PubMed ID: 8878572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance of biofilms to the catalase inhibitor 3-amino-1,2, 4-triazole.
    Lu X; Roe F; Jesaitis A; Lewandowski Z
    Biotechnol Bioeng; 1998 Jul; 59(2):156-62. PubMed ID: 10099326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates.
    Stewart PS; Rayner J; Roe F; Rees WM
    J Appl Microbiol; 2001 Sep; 91(3):525-32. PubMed ID: 11556920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm.
    Stewart PS; Wattanakaroon W; Goodrum L; Fortun SM; McLeod BR
    Antimicrob Agents Chemother; 1999 Feb; 43(2):292-6. PubMed ID: 9925521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiotics Enhance Prevention and Eradication Efficacy of Cathodic-Voltage-Controlled Electrical Stimulation against Titanium-Associated Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Biofilms.
    Canty MK; Hansen LA; Tobias M; Spencer S; Henry T; Luke-Marshall NR; Campagnari AA; Ehrensberger MT
    mSphere; 2019 May; 4(3):. PubMed ID: 31043516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method.
    Li X; Lu Y; Luo H; Liu G; Zhang R
    Bioresour Technol; 2017 Oct; 241():384-390. PubMed ID: 28578279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar energy powered microbial fuel cell with a reversible bioelectrode.
    Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(1):532-7. PubMed ID: 19961218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of antibiotics on Pseudomonas aeruginosa NK125502 and Pseudomonas fluorescens MF0 biofilm formation on immobilized fibronectin.
    Gagnière H; Di Martino P
    J Chemother; 2004 Jun; 16(3):244-7. PubMed ID: 15330319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of electrostatic interactions in cohesion of bacterial biofilms.
    Chen X; Stewart PS
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):718-20. PubMed ID: 12226730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on the antimicrobial susceptibility of planktonic and biofilm-grown clinical Pseudomonas aeruginosa isolates.
    Moriarty TF; Elborn JS; Tunney MM
    Br J Biomed Sci; 2007; 64(3):101-4. PubMed ID: 17910277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella.
    Benthall G; Touzel RE; Hind CK; Titball RW; Sutton JM; Thomas RJ; Wand ME
    Int J Antimicrob Agents; 2015 Nov; 46(5):538-45. PubMed ID: 26364845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae.
    Lee MY; Ko KS; Song JH; Peck KR
    J Antimicrob Chemother; 2007 Oct; 60(4):782-7. PubMed ID: 17681978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode measurements of local mass transport rates in heterogeneous biofilms.
    Rasmussen K; Lewandowski Z
    Biotechnol Bioeng; 1998 Aug; 59(3):302-9. PubMed ID: 10099341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.