BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9303547)

  • 1. MPM-2 epitope sequence is not sufficient for recognition and phosphorylation by ME kinase-H.
    Che S; Weil MM; Nelman-Gonzalez M; Ashorn CL; Kuang J
    FEBS Lett; 1997 Aug; 413(3):417-23. PubMed ID: 9303547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. At least two kinases phosphorylate the MPM-2 epitope during Xenopus oocyte maturation.
    Kuang J; Ashorn CL
    J Cell Biol; 1993 Nov; 123(4):859-68. PubMed ID: 7693720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphatase activity in Xenopus oocyte extracts preferentially dephosphorylates the MPM-2 epitope.
    Che S; Wu W; Nelman-Gonzalez M; Stukenberg T; Clark R; Kuang J
    FEBS Lett; 1998 Mar; 424(3):225-33. PubMed ID: 9539156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the M phase-specific phosphorylation of serine-proline or threonine-proline motifs.
    Wu CF; Wang R; Liang Q; Liang J; Li W; Jung SY; Qin J; Lin SH; Kuang J
    Mol Biol Cell; 2010 May; 21(9):1470-81. PubMed ID: 20219976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MPM-2 antibody inhibits mitogen-activated protein kinase activity by binding to an epitope containing phosphothreonine-183.
    Taagepera S; Dent P; Her JH; Sturgill TW; Gorbsky GJ
    Mol Biol Cell; 1994 Nov; 5(11):1243-51. PubMed ID: 7532473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cdc25 is one of the MPM-2 antigens involved in the activation of maturation-promoting factor.
    Kuang J; Ashorn CL; Gonzalez-Kuyvenhoven M; Penkala JE
    Mol Biol Cell; 1994 Feb; 5(2):135-45. PubMed ID: 8019000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469.
    Escargueil AE; Plisov SY; Filhol O; Cochet C; Larsen AK
    J Biol Chem; 2000 Nov; 275(44):34710-8. PubMed ID: 10942766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MPM-2 antibody-reactive phosphorylations can be created in detergent-extracted cells by kinetochore-bound and soluble kinases.
    Renzi L; Gersch MS; Campbell MS; Wu L; Osmani SA; Gorbsky GJ
    J Cell Sci; 1997 Sep; 110 ( Pt 17)():2013-25. PubMed ID: 9378753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial characterization of the MPM-2 phosphoepitope.
    Ding M; Feng Y; Vandré DD
    Exp Cell Res; 1997 Feb; 231(1):3-13. PubMed ID: 9056407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of a novel Ca2+/calmodulin-dependent protein kinase I homologue in Xenopus laevis.
    Kinoshita S; Sueyoshi N; Shoju H; Suetake I; Nakamura M; Tajima S; Kameshita I
    J Biochem; 2004 May; 135(5):619-30. PubMed ID: 15173201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle regulation of a Xenopus Wee1-like kinase.
    Mueller PR; Coleman TR; Dunphy WG
    Mol Biol Cell; 1995 Jan; 6(1):119-34. PubMed ID: 7749193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes.
    Posada J; Cooper JA
    Science; 1992 Jan; 255(5041):212-5. PubMed ID: 1313186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the autophosphorylation sites of the Xenopus laevis Pim-1 proto-oncogene-encoded protein kinase.
    Palaty CK; Kalmar G; Tai G; Oh S; Amankawa L; Affolter M; Aebersold R; Pelech SL
    J Biol Chem; 1997 Apr; 272(16):10514-21. PubMed ID: 9099695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta.
    Kawaguchi Y; Kato K; Tanaka M; Kanamori M; Nishiyama Y; Yamanashi Y
    J Virol; 2003 Feb; 77(4):2359-68. PubMed ID: 12551973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro.
    Bosc DG; Slominski E; Sichler C; Litchfield DW
    J Biol Chem; 1995 Oct; 270(43):25872-8. PubMed ID: 7592773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II.
    Hutchins JR; Dikovskaya D; Clarke PR
    Mol Biol Cell; 2003 Oct; 14(10):4003-14. PubMed ID: 14517314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisite phosphorylation of Pin1-associated mitotic phosphoproteins revealed by monoclonal antibodies MPM-2 and CC-3.
    Albert AL; Lavoie SB; Vincent M
    BMC Cell Biol; 2004 Jun; 5():22. PubMed ID: 15171797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.
    Kumagai A; Dunphy WG
    Science; 1996 Sep; 273(5280):1377-80. PubMed ID: 8703070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate.
    Scott JW; Norman DG; Hawley SA; Kontogiannis L; Hardie DG
    J Mol Biol; 2002 Mar; 317(2):309-23. PubMed ID: 11902845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenopus laevis occludin. Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin.
    Cordenonsi M; Turco F; D'atri F; Hammar E; Martinucci G; Meggio F; Citi S
    Eur J Biochem; 1999 Sep; 264(2):374-84. PubMed ID: 10491082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.