These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 9304399)

  • 1. Local regulation of oviductal blood flow.
    García-Pascual A; Labadía A; Triguero D; Costa G
    Gen Pharmacol; 1996 Dec; 27(8):1303-10. PubMed ID: 9304399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histamine receptors in isolated bovine oviductal arteries.
    Martínez AC; Novella S; Raposo R; Recio P; Labadía A; Costa G; Garcia-Sacristán A; Benedito S
    Eur J Pharmacol; 1997 May; 326(2-3):163-73. PubMed ID: 9196269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of nitric oxide and other endothelium-derived factors].
    Stankevicius E; Kevelaitis E; Vainorius E; Simonsen U
    Medicina (Kaunas); 2003; 39(4):333-41. PubMed ID: 12738901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular endothelial growth factor system in the cow oviduct: a possible involvement in the regulation of oviductal motility and embryo transport.
    Wijayagunawardane MP; Kodithuwakku SP; Yamamoto D; Miyamoto A
    Mol Reprod Dev; 2005 Dec; 72(4):511-20. PubMed ID: 16155957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-derived relaxing and contracting factors.
    Furchgott RF; Vanhoutte PM
    FASEB J; 1989 Jul; 3(9):2007-18. PubMed ID: 2545495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived relaxing and contracting factors.
    Rubanyi GM
    J Cell Biochem; 1991 May; 46(1):27-36. PubMed ID: 1874796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelin-2 induces oviductal contraction via endothelin receptor subtype A in rats.
    Al-Alem L; Bridges PJ; Su W; Gong MC; Iglarz M; Ko C
    J Endocrinol; 2007 Jun; 193(3):383-91. PubMed ID: 17535876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of endothelium and nitric oxide in histamine-induced responses in human cranial arteries and detection of mRNA encoding H1- and H2-receptors by RT-PCR.
    Jansen-Olesen I; Ottosson A; Cantera L; Strunk S; Lassen LH; Olesen J; Mortensen A; Engel U; Edvinsson L
    Br J Pharmacol; 1997 May; 121(1):41-8. PubMed ID: 9146885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin receptor-mediated Ca2+ mobilization and contraction in bovine oviductal arteries: comparison with noradrenaline and potassium.
    Labadía A; Costa G; Jimenez E; Triguero D; García-Pascual A
    Gen Pharmacol; 1997 Oct; 29(4):611-9. PubMed ID: 9352311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels.
    Simonsen U; Prieto D; Sánez de Tejada I; García-Sacristán A
    Br J Pharmacol; 1995 Nov; 116(6):2582-90. PubMed ID: 8590974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical and biological evidence for a neuromodulator function of neuropeptide Y in the human oviduct.
    Heinrich D; Reinecke M; Gauwerky JF; Forssmann WG
    Arch Gynecol Obstet; 1987; 241(2):127-32. PubMed ID: 3318715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II and atrial natriuretic peptide in the cow oviductal contraction in vitro: direct effect and local secretion of prostaglandins, endothelin-1, and angiotensin II.
    Wijayagunawardane MP; Miyamoto A; Taquahashi Y; Acosta TJ; Nishimura M; Sato K
    Biol Reprod; 2001 Sep; 65(3):799-804. PubMed ID: 11514344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial dysfunction and vascular disease - a 30th anniversary update.
    Vanhoutte PM; Shimokawa H; Feletou M; Tang EH
    Acta Physiol (Oxf); 2017 Jan; 219(1):22-96. PubMed ID: 26706498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of 5-hydroxytryptamine on the membrane potential of endothelial and smooth muscle cells in the pig coronary artery.
    Frieden M; Bény JL
    Br J Pharmacol; 1995 May; 115(1):95-100. PubMed ID: 7647989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-derived hyperpolarizing factor and endothelium-dependent relaxations.
    Nagao T; Vanhoutte PM
    Am J Respir Cell Mol Biol; 1993 Jan; 8(1):1-6. PubMed ID: 8380248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nitric oxide on vasorelaxation in human umbilical artery.
    Izumi H; Makino Y; Shirakawa K; Garfield RE
    Am J Obstet Gynecol; 1995 May; 172(5):1477-84. PubMed ID: 7755057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery.
    Yamakawa N; Ohhashi M; Waga S; Itoh T
    Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial control of vascular tone in large and small coronary arteries.
    Lüscher TF; Richard V; Tschudi M; Yang ZH; Boulanger C
    J Am Coll Cardiol; 1990 Mar; 15(3):519-27. PubMed ID: 2406318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.