These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9304407)

  • 1. A novel phasic contraction induced by dithiothreitol in frog skeletal muscle.
    Oba T; Nihonyanagi K; Tangkawattana P; Yamaguchi M
    Gen Pharmacol; 1996 Dec; 27(8):1361-6. PubMed ID: 9304407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold ion induces contraction in frog skeletal muscle fibers.
    Nihonyanagi K; Oba T
    Eur J Pharmacol; 1993 Jul; 238(2-3):149-55. PubMed ID: 8405088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfhydryls on frog skeletal muscle membrane participate in contraction.
    Oba T; Yamaguchi M
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C709-14. PubMed ID: 2240191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hg2+-induced contracture in mechanically skinned fibers of frog skeletal muscle.
    Aoki T; Oba T; Hotta K
    Can J Physiol Pharmacol; 1985 Sep; 63(9):1070-4. PubMed ID: 3931888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle contraction and inward current induced by silver and effect of Ca2+ channel blockers.
    Oba T; Aoki T; Koshita M; Nihonyanagi K; Yamaguchi M
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C852-6. PubMed ID: 8386451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in the electromechanical activity in the course of tetanic contraction].
    Nasledov GA; Katina IE; Zhitnikova IuV
    Ross Fiziol Zh Im I M Sechenova; 2005 Nov; 91(11):1288-98. PubMed ID: 16408637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cyclopiazonic acid on contractile responses in slow and fast bundles of cremaster skeletal muscle from the ferret.
    Huchet C; Léoty C
    Can J Physiol Pharmacol; 1994 Aug; 72(8):833-40. PubMed ID: 7834571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres.
    Salama G; Abramson JJ; Pike GK
    J Physiol; 1992 Aug; 454():389-420. PubMed ID: 1335505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the organic Ca2+ channel blocker D-600 on sarcoplasmic reticulum Ca2+ uptake in skeletal muscle.
    Ortega A; Gonzalez-Serratos H; Lepock JR
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C310-7. PubMed ID: 9038837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive disulfide compounds induce Ca2+ release from cardiac sarcoplasmic reticulum.
    Prabhu SD; Salama G
    Arch Biochem Biophys; 1990 Nov; 282(2):275-83. PubMed ID: 2146921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible thiol-dependent activation of ryanodine-sensitive Ca2+ release channel by etoposide (VP-16) phenoxyl radical.
    Fabisiak JP; Ritov VB; Kagan VE
    Antioxid Redox Signal; 2000; 2(1):73-82. PubMed ID: 11232603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of oxidation and reduction on contractile function in skeletal muscle fibres of the rat.
    Lamb GD; Posterino GS
    J Physiol; 2003 Jan; 546(Pt 1):149-63. PubMed ID: 12509485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ivermectin and midecamycin on ryanodine receptors and the Ca2+-ATPase in sarcoplasmic reticulum of rabbit and rat skeletal muscle.
    Ahern GP; Junankar PR; Pace SM; Curtis S; Mould JA; Dulhunty AF
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):313-26. PubMed ID: 9852316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl jasmonate-induced stimulation of sarcoplasmic reticulum Ca(2+)-ATPase affects contractile responses in rat slow-twitch skeletal muscle.
    Joumaa WH; Bouhlel A; Même W; Léoty C
    J Pharmacol Exp Ther; 2002 Feb; 300(2):638-46. PubMed ID: 11805227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the Ca2+ channel voltage sensor and excitation-contraction coupling by silver.
    Oba T; Yamaguchi M; Wang S; Johnson JD
    Biophys J; 1992 Nov; 63(5):1416-20. PubMed ID: 1335784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle.
    McCleskey EW
    J Physiol; 1985 Apr; 361():231-49. PubMed ID: 2580976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
    Posterino GS; Cellini MA; Lamb GD
    J Physiol; 2003 Mar; 547(Pt 3):807-23. PubMed ID: 12562929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible involvement of Ca(2+)-induced Ca2+ release mechanism in Ag(+)-induced contracture in frog skeletal muscle.
    Oba T; Nihonyanagi K; Yamaguchi M
    Eur J Pharmacol; 1995 Mar; 292(3-4):301-8. PubMed ID: 7796870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+)-Ca2+ exchange induces low Na+ contracture in frog skeletal muscle fibers after partial inhibition of sarcoplasmic reticulum Ca(2+)-ATPase.
    Même W; Léoty C
    Pflugers Arch; 1999 Nov; 438(6):851-9. PubMed ID: 10591074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.