These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9304436)

  • 1. Retinal pigment epithelial origin of bicarbonate response.
    Segawa Y; Shirao Y; Kawasaki K
    Jpn J Ophthalmol; 1997; 41(4):231-4. PubMed ID: 9304436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetazolamide-induced changes of the membrane potentials of the retinal pigment epithelial cell.
    Kawasaki K; Mukoh S; Yonemura D; Fujii S; Segawa Y
    Doc Ophthalmol; 1986 Nov; 63(4):375-81. PubMed ID: 3492349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial observations on the isolated retinal pigment epithelium-choroid of the cat.
    Steinberg RH; Miller SS; Stern WH
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):675-8. PubMed ID: 307543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Nao-i N; Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):54-66. PubMed ID: 1688834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):67-80. PubMed ID: 2298543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of azide induced increases in the c-wave and standing potential of the intact cat eye.
    Linsenmeier RA; Steinberg RH
    Vision Res; 1987; 27(1):1-8. PubMed ID: 3617540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of bicarbonate ion on chick retinal pigment epithelium: membrane potentials and light-evoked responses.
    Maruiwa F; Naoi N; Nakazaki S; Sawada A
    Vision Res; 1999 Jan; 39(1):159-67. PubMed ID: 10211403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperosmolarity-induced hyperpolarization of the membrane potential of the retinal pigment epithelium.
    Mukoh S; Kawasaki K; Yonemura D; Tanabe J
    Doc Ophthalmol; 1985 Oct; 60(4):369-74. PubMed ID: 3877621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological effects of corticosteroids on the retinal pigment epithelium.
    Arndt C; Sari A; Ferre M; Parrat E; Courtas D; De Seze J; Hache J; Matran R
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):472-5. PubMed ID: 11157885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium-evoked responses from the retinal pigment epithelium of the toad Bufo marinus.
    Griff ER
    Exp Eye Res; 1991 Aug; 53(2):219-28. PubMed ID: 1915678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of melatonin on the chick retinal pigment epithelium: membrane potentials and light-evoked responses.
    Nao-i N; Nilsson SE; Gallemore RP; Steinberg RH
    Exp Eye Res; 1989 Oct; 49(4):573-89. PubMed ID: 2806426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium conductances in cultured bovine and human retinal pigment epithelium.
    Hernandez EV; Hu JG; Frambach DA; Gallemore RP
    Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):113-22. PubMed ID: 7822138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response properties of the toad retinal pigment epithelium.
    Griff ER
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2353-60. PubMed ID: 2173687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of adenosine on chick retinal pigment epithelium: membrane potentials and light-evoked responses.
    Maruiwa F; Nao-i N; Nakazaki S; Sawada A
    Curr Eye Res; 1995 Aug; 14(8):685-91. PubMed ID: 8529404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium.
    Hughes BA; Adorante JS; Miller SS; Lin H
    J Gen Physiol; 1989 Jul; 94(1):125-50. PubMed ID: 2553856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium.
    Joseph DP; Miller SS
    J Gen Physiol; 1992 Feb; 99(2):263-90. PubMed ID: 1319462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization.
    Oakley B
    J Gen Physiol; 1977 Oct; 70(4):405-25. PubMed ID: 303279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic inhibitors reversibly alter the basal membrane potential of the gecko retinal pigment epithelium.
    Griff ER
    Exp Eye Res; 1990 Jan; 50(1):99-107. PubMed ID: 2307200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenergic receptor activated ion transport in human fetal retinal pigment epithelium.
    Quinn RH; Quong JN; Miller SS
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):255-64. PubMed ID: 11133877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrogenic sodium pump of the frog retinal pigment epithelium.
    Miller SS; Steinberg RH; Oakley B
    J Membr Biol; 1978 Dec; 44(3-4):259-79. PubMed ID: 313450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.