These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
644 related articles for article (PubMed ID: 9305646)
21. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae. Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596 [TBL] [Abstract][Full Text] [Related]
22. Nucleotide excision repair and photolyase preferentially repair the nontranscribed strand of RNA polymerase III-transcribed genes in Saccharomyces cerevisiae. Aboussekhra A; Thoma F Genes Dev; 1998 Feb; 12(3):411-21. PubMed ID: 9450934 [TBL] [Abstract][Full Text] [Related]
23. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. Palomera-Sanchez Z; Zurita M DNA Repair (Amst); 2011 Feb; 10(2):119-25. PubMed ID: 21130713 [TBL] [Abstract][Full Text] [Related]
24. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus. Romano V; Napoli A; Salerno V; Valenti A; Rossi M; Ciaramella M J Mol Biol; 2007 Jan; 365(4):921-9. PubMed ID: 17113105 [TBL] [Abstract][Full Text] [Related]
25. Photoreactivation of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene of Saccharomyces cerevisiae. Morse NR; Meniel V; Waters R Nucleic Acids Res; 2002 Apr; 30(8):1799-807. PubMed ID: 11937634 [TBL] [Abstract][Full Text] [Related]
26. Nucleosome positioning, nucleotide excision repair and photoreactivation in Saccharomyces cerevisiae. Guintini L; Charton R; Peyresaubes F; Thoma F; Conconi A DNA Repair (Amst); 2015 Dec; 36():98-104. PubMed ID: 26429065 [TBL] [Abstract][Full Text] [Related]
27. Genome-scale identification of nucleosome positions in S. cerevisiae. Yuan GC; Liu YJ; Dion MF; Slack MD; Wu LF; Altschuler SJ; Rando OJ Science; 2005 Jul; 309(5734):626-30. PubMed ID: 15961632 [TBL] [Abstract][Full Text] [Related]
28. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation. Fascher KD; Schmitz J; Hörz W J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443 [TBL] [Abstract][Full Text] [Related]
29. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. Ura K; Araki M; Saeki H; Masutani C; Ito T; Iwai S; Mizukoshi T; Kaneda Y; Hanaoka F EMBO J; 2001 Apr; 20(8):2004-14. PubMed ID: 11296233 [TBL] [Abstract][Full Text] [Related]
30. Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Suter B; Schnappauf G; Thoma F Nucleic Acids Res; 2000 Nov; 28(21):4083-9. PubMed ID: 11058103 [TBL] [Abstract][Full Text] [Related]
31. Induction and repair of cyclobutane pyrimidine dimers in the Escherichia coli tRNA gene tyrT: Fis protein affects dimer induction in the control region and suppresses preferential repair in the coding region of the transcribed strand, except in a short region near the transcription start site. Li S; Waters R J Mol Biol; 1997 Aug; 271(1):31-46. PubMed ID: 9300053 [TBL] [Abstract][Full Text] [Related]
32. Nucleotide excision repair in a constitutive and inducible gene of a yeast minichromosome in intact cells. Li S; Livingstone-Zatchej M; Gupta R; Meijer M; Thoma F; Smerdon MJ Nucleic Acids Res; 1999 Sep; 27(17):3610-20. PubMed ID: 10446254 [TBL] [Abstract][Full Text] [Related]
33. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions. del Olmo ML; Sogo JM; Franco L; Pérez-Ortín JE Yeast; 1993 Nov; 9(11):1229-40. PubMed ID: 8109172 [TBL] [Abstract][Full Text] [Related]
34. UV-induced de novo protein synthesis enhances nucleotide excision repair efficiency in a transcription-dependent manner in S. cerevisiae. Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A DNA Repair (Amst); 2003 Nov; 2(11):1185-97. PubMed ID: 14599741 [TBL] [Abstract][Full Text] [Related]
35. TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box. Aboussekhra A; Thoma F EMBO J; 1999 Jan; 18(2):433-43. PubMed ID: 9889199 [TBL] [Abstract][Full Text] [Related]
36. Yeast chromatin reconstitution system using purified yeast core histones and yeast nucleosome assembly protein-1. Pilon J; Terrell A; Laybourn PJ Protein Expr Purif; 1997 Jun; 10(1):132-40. PubMed ID: 9179300 [TBL] [Abstract][Full Text] [Related]
37. Homologous recombination is involved in transcription-coupled repair of UV damage in Saccharomyces cerevisiae. Aboussekhra A; Al-Sharif IS EMBO J; 2005 Jun; 24(11):1999-2010. PubMed ID: 15902273 [TBL] [Abstract][Full Text] [Related]
38. Rapid accessibility of nucleosomal DNA in yeast on a second time scale. Bucceri A; Kapitza K; Thoma F EMBO J; 2006 Jul; 25(13):3123-32. PubMed ID: 16778764 [TBL] [Abstract][Full Text] [Related]
39. Antagonistic forces that position nucleosomes in vivo. Whitehouse I; Tsukiyama T Nat Struct Mol Biol; 2006 Jul; 13(7):633-40. PubMed ID: 16819518 [TBL] [Abstract][Full Text] [Related]
40. RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast. Tijsterman M; de Pril R; Tasseron-de Jong JG; Brouwer J Mol Cell Biol; 1999 Jan; 19(1):934-40. PubMed ID: 9858617 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]