These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 9305753)
1. Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. Stocchetto S; Marin O; Carignani G; Pinna LA FEBS Lett; 1997 Sep; 414(1):171-5. PubMed ID: 9305753 [TBL] [Abstract][Full Text] [Related]
2. Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. Facchin S; Lopreiato R; Stocchetto S; Arrigoni G; Cesaro L; Marin O; Carignani G; Pinna LA Biochem J; 2002 Jun; 364(Pt 2):457-63. PubMed ID: 12023889 [TBL] [Abstract][Full Text] [Related]
3. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue. Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the KIN2 gene product in Saccharomyces cerevisiae and comparison between the kinase activities of p145KIN1 and p145KIN2. Donovan M; Romano P; Tibbetts M; Hammond CI Yeast; 1994 Jan; 10(1):113-24. PubMed ID: 8203145 [TBL] [Abstract][Full Text] [Related]
5. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Stern DF; Zheng P; Beidler DR; Zerillo C Mol Cell Biol; 1991 Feb; 11(2):987-1001. PubMed ID: 1899289 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Lopreiato R; Facchin S; Sartori G; Arrigoni G; Casonato S; Ruzzene M; Pinna LA; Carignani G Biochem J; 2004 Jan; 377(Pt 2):395-405. PubMed ID: 14519092 [TBL] [Abstract][Full Text] [Related]
7. The budding yeast HRR25 gene product is a casein kinase I isoform. DeMaggio AJ; Lindberg RA; Hunter T; Hoekstra MF Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7008-12. PubMed ID: 1495994 [TBL] [Abstract][Full Text] [Related]
8. Characterization of PknC, a Ser/Thr kinase with broad substrate specificity from the cyanobacterium Anabaena sp. strain PCC 7120. Gonzalez L; Phalip V; Zhang CC Eur J Biochem; 2001 Mar; 268(6):1869-75. PubMed ID: 11248708 [TBL] [Abstract][Full Text] [Related]
9. Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. Zhai L; Graves PR; Robinson LC; Italiano M; Culbertson MR; Rowles J; Cobb MH; DePaoli-Roach AA; Roach PJ J Biol Chem; 1995 May; 270(21):12717-24. PubMed ID: 7759525 [TBL] [Abstract][Full Text] [Related]
10. Acidophilic character of yeast PID261/BUD32, a putative ancestor of eukaryotic protein kinases. Facchin S; Sarno S; Marin O; Lopreiato R; Sartori G; Pinna LA Biochem Biophys Res Commun; 2002 Sep; 296(5):1366-71. PubMed ID: 12207926 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5. Jeong JY; Johns J; Sinclair C; Park JM; Rossie S BMC Cell Biol; 2003 Mar; 4():3. PubMed ID: 12694636 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the protein kinase Pak1 suppresses yeast DNA polymerase mutations. Hovland PG; Tecklenberg M; Sclafani RA Mol Gen Genet; 1997 Sep; 256(1):45-53. PubMed ID: 9341678 [TBL] [Abstract][Full Text] [Related]
13. A type-1 casein kinase from yeast phosphorylates both serine and threonine residues of casein. Identification of the phosphorylation sites. Donella-Deana A; Grankowski N; Kudlicki W; Szyszka R; Gasior E; Pinna LA Biochim Biophys Acta; 1985 Jun; 829(2):180-7. PubMed ID: 3922418 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of a novel Ca2+/calmodulin-dependent protein kinase I homologue in Xenopus laevis. Kinoshita S; Sueyoshi N; Shoju H; Suetake I; Nakamura M; Tajima S; Kameshita I J Biochem; 2004 May; 135(5):619-30. PubMed ID: 15173201 [TBL] [Abstract][Full Text] [Related]
15. Suppression of Escherichia coli alkB mutants by Saccharomyces cerevisiae genes. Wei YF; Chen BJ; Samson L J Bacteriol; 1995 Sep; 177(17):5009-15. PubMed ID: 7665478 [TBL] [Abstract][Full Text] [Related]
16. StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Neu JM; MacMillan SV; Nodwell JR; Wright GD Mol Microbiol; 2002 Apr; 44(2):417-30. PubMed ID: 11972780 [TBL] [Abstract][Full Text] [Related]
17. Serine-threonine protein kinase activity of Elm1p, a regulator of morphologic differentiation in Saccharomyces cerevisiae. Koehler CM; Myers AM FEBS Lett; 1997 May; 408(1):109-14. PubMed ID: 9180279 [TBL] [Abstract][Full Text] [Related]
18. Cloning and genetic analysis of the gene encoding a new protein kinase in Saccharomyces cerevisiae. Kambouris NG; Burke DJ; Creutz CE Yeast; 1993 Feb; 9(2):141-50. PubMed ID: 8465601 [TBL] [Abstract][Full Text] [Related]
19. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. McCartney RR; Garnar-Wortzel L; Chandrashekarappa DG; Schmidt MC Biochim Biophys Acta; 2016 Nov; 1864(11):1518-28. PubMed ID: 27524664 [TBL] [Abstract][Full Text] [Related]