These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bradykinin stimulates phosphoinositide turnover and phospholipase C but not phospholipase D and NADPH oxidase in human neutrophils. Catz SD; Steŕin-Speziale NB J Leukoc Biol; 1996 Apr; 59(4):591-7. PubMed ID: 8613709 [TBL] [Abstract][Full Text] [Related]
3. Superoxide anion production and phospholipase D-mediated generation of diacylglycerol are subnormal after N-formyl-methionyl-leucyl-phenylalanine stimulation of polymorphonuclear granulocytes in polycythemia vera. Samuelsson J; Hansson A; Rosendahl K; Palmblad J J Lab Clin Med; 1993 Feb; 121(2):310-9. PubMed ID: 8381848 [TBL] [Abstract][Full Text] [Related]
4. Priming of phosphatidic acid production by staurosporine in f-Met-Leu-Phe-stimulated human neutrophils--correlation with respiratory burst. Rais S; Pédruzzi E; Dang MC; Giroud JP; Hakim J; Périanin A Cell Signal; 1998 Feb; 10(2):121-9. PubMed ID: 9481487 [TBL] [Abstract][Full Text] [Related]
5. Ca2+-independent synergistic augmentation of O2- production by FMLP and PMA in HL-60 cells. Tsukii K; Nakahata N; Tsurufuji S; Ohizumi Y Can J Physiol Pharmacol; 1998; 76(10-11):1024-32. PubMed ID: 10100885 [TBL] [Abstract][Full Text] [Related]
6. Staurosporine and its derivatives enhance f-Met-Leu-Phe-induced superoxide production via phospholipase D activation in human polymorphonuclear leukocytes. Mori T; Ando M; Takagi K Int J Clin Pharmacol Ther; 1994 Aug; 32(8):422-8. PubMed ID: 7981927 [TBL] [Abstract][Full Text] [Related]
7. Glucose suppresses superoxide generation in normal neutrophils: interference in phospholipase D activation. Ortmeyer J; Mohsenin V Am J Physiol; 1993 Feb; 264(2 Pt 1):C402-10. PubMed ID: 8383432 [TBL] [Abstract][Full Text] [Related]
8. Protein kinase C activity is not involved in N-formylmethionyl-leucyl-phenylalanine-induced phospholipase D activation in human neutrophils, but is essential for concomitant NADPH oxidase activation: studies with a staurosporine analogue with improved selectivity for protein kinase C. Kessels GC; Krause KH; Verhoeven AJ Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):781-5. PubMed ID: 8391255 [TBL] [Abstract][Full Text] [Related]
9. Effects of respiratory burst inhibitors on nitric oxide production by human neutrophils. Carreras MC; Riobó NA; Pargament GA; Boveris A; Poderoso JJ Free Radic Res; 1997 Apr; 26(4):325-34. PubMed ID: 9167937 [TBL] [Abstract][Full Text] [Related]
10. 2-Hydroxymethyl-1-naphthol diacetate (TAC) suppresses the superoxide anion generation in rat neutrophils. Wang JP; Tsao LT; Shen AY; Raung SL; Chang LC Free Radic Biol Med; 1999 Apr; 26(7-8):1010-8. PubMed ID: 10232846 [TBL] [Abstract][Full Text] [Related]
11. Analysis of choline and phosphorylcholine content in human neutrophils stimulated by f-Met-Leu-Phe and phorbol myristate acetate: contribution of phospholipase D and C. Pédruzzi E; Hakim J; Giroud JP; Périanin A Cell Signal; 1998 Jul; 10(7):481-9. PubMed ID: 9754716 [TBL] [Abstract][Full Text] [Related]
12. Tumor necrosis factor alpha priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. Bauldry SA; Bass DA; Cousart SL; McCall CE J Biol Chem; 1991 Mar; 266(7):4173-9. PubMed ID: 1847915 [TBL] [Abstract][Full Text] [Related]
13. The phosphatase inhibitor 2,3-diphosphoglycerate interferes with phospholipase D activation in rabbit peritoneal neutrophils. Kanaho Y; Nakai Y; Katoh M; Nozawa Y J Biol Chem; 1993 Jun; 268(17):12492-7. PubMed ID: 8389759 [TBL] [Abstract][Full Text] [Related]
14. Contrasting effects of calyculin A and okadaic acid on the respiratory burst of human neutrophils. Djerdjouri B; Combadière C; Pedruzzi E; Hakim J; Périanin A Eur J Pharmacol; 1995 Jan; 288(2):193-200. PubMed ID: 7720781 [TBL] [Abstract][Full Text] [Related]
15. Cytosolic protein phosphatase may turn off activated NADPH oxidase in guinea pig neutrophils. Yamaguchi M; Sasaki J; Kuwana M; Sakai M; Okamura N; Ishibashi S Arch Biochem Biophys; 1993 Oct; 306(1):209-14. PubMed ID: 8215405 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the cellular mechanism of inhibition of formyl-methionyl-leucyl-phenylalanine-induced superoxide anion generation in rat neutrophils by 2-benzyloxybenzaldehyde. Wang JP; Chang LC; Lin YL; Hsu MF; Chang CY; Huang LJ; Kuo SC Biochem Pharmacol; 2003 Apr; 65(7):1043-51. PubMed ID: 12663040 [TBL] [Abstract][Full Text] [Related]
17. Modulation of luminol chemiluminescence of fMet-Leu-Phe-stimulated neutrophils by affecting dephosphorylation and the metabolism of phosphatidic acid. Arnhold J; Benard S; Kilian U; Reichl S; Schiller J; Arnold K Luminescence; 1999; 14(3):129-37. PubMed ID: 10423573 [TBL] [Abstract][Full Text] [Related]
18. Calyculin A modulates activation of the NADPH-oxidase in Me2SO-differentiated HL-60 cells. Park JI; Uhlinger DJ; Chung BS; Kim IH; Kwak JY Exp Mol Med; 1998 Dec; 30(4):214-20. PubMed ID: 9894151 [TBL] [Abstract][Full Text] [Related]
19. Blockade of protein kinase C is involved in the inhibition by cycloheterophyllin of neutrophil superoxide anion generation. Wang JP; Raung SL; Tsao LT; Hsu MF; Lin CN Naunyn Schmiedebergs Arch Pharmacol; 1997 May; 355(5):551-8. PubMed ID: 9151291 [TBL] [Abstract][Full Text] [Related]
20. Involvement of protein kinase C and of protein phosphatases 1 and/or 2A in p47 phox phosphorylation in formylmet-Leu-Phe stimulated neutrophils: studies with selective inhibitors RO 31-8220 and calyculin A. Bengis-Garber C; Gruener N Cell Signal; 1995 Sep; 7(7):721-32. PubMed ID: 8519601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]