These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 9305820)
1. The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia. Marotta JJ; Behrmann M; Goodale MA Exp Brain Res; 1997 Aug; 116(1):113-21. PubMed ID: 9305820 [TBL] [Abstract][Full Text] [Related]
2. The role of learned pictorial cues in the programming and control of grasping. Marotta JJ; Goodale MA Exp Brain Res; 1998 Aug; 121(4):465-70. PubMed ID: 9746154 [TBL] [Abstract][Full Text] [Related]
3. Monocular vision leads to a dissociation between grip force and grip aperture scaling during reach-to-grasp movements. Jackson SR; Newport R; Shaw A Curr Biol; 2002 Feb; 12(3):237-40. PubMed ID: 11839278 [TBL] [Abstract][Full Text] [Related]
4. When two eyes are better than one in prehension: monocular viewing and end-point variance. Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152 [TBL] [Abstract][Full Text] [Related]
5. Motion parallax enables depth processing for action in a visual form agnosic when binocular vision is unavailable. Dijkerman HC; Milner AD; Carey DP Neuropsychologia; 1999 Dec; 37(13):1505-10. PubMed ID: 10617271 [TBL] [Abstract][Full Text] [Related]
6. A comparison of visuomotor cue integration strategies for object placement and prehension. Greenwald HS; Knill DC Vis Neurosci; 2009; 26(1):63-72. PubMed ID: 18759994 [TBL] [Abstract][Full Text] [Related]
7. The perception and prehension of objects oriented in the depth plane. I. Effects of visual form agnosia. Dijkerman HC; Milner AD; Carey DP Exp Brain Res; 1996 Dec; 112(3):442-51. PubMed ID: 9007546 [TBL] [Abstract][Full Text] [Related]
8. Depth-cue integration in grasp programming: no evidence for a binocular specialism. Keefe BD; Hibbard PB; Watt SJ Neuropsychologia; 2011 Apr; 49(5):1246-1257. PubMed ID: 21371484 [TBL] [Abstract][Full Text] [Related]
9. The role of head movements in the control of manual prehension. Marotta JJ; Kruyer A; Goodale MA Exp Brain Res; 1998 May; 120(1):134-8. PubMed ID: 9628412 [TBL] [Abstract][Full Text] [Related]
10. Monocular and binocular distance cues: insights from visual form agnosia I (of III). Mon-Williams M; Tresilian JR; McIntosh RD; Milner AD Exp Brain Res; 2001 Jul; 139(2):127-36. PubMed ID: 11497053 [TBL] [Abstract][Full Text] [Related]
11. Proprioceptive Distance Cues Restore Perfect Size Constancy in Grasping, but Not Perception, When Vision Is Limited. Chen J; Sperandio I; Goodale MA Curr Biol; 2018 Mar; 28(6):927-932.e4. PubMed ID: 29502946 [TBL] [Abstract][Full Text] [Related]
12. Some binocular advantages for planning reach, but not grasp, components of prehension. Grant S; Conway ML Exp Brain Res; 2019 May; 237(5):1239-1255. PubMed ID: 30850853 [TBL] [Abstract][Full Text] [Related]
13. Does a monocularly presented size-contrast illusion influence grip aperture? Marotta JJ; DeSouza JF; Haffenden AM; Goodale MA Neuropsychologia; 1998 Jun; 36(6):491-7. PubMed ID: 9705058 [TBL] [Abstract][Full Text] [Related]
14. Advantages of binocular vision for the control of reaching and grasping. Melmoth DR; Grant S Exp Brain Res; 2006 May; 171(3):371-88. PubMed ID: 16323004 [TBL] [Abstract][Full Text] [Related]
15. Reaching for visual cues to depth: the brain combines depth cues differently for motor control and perception. Knill DC J Vis; 2005 Feb; 5(2):103-15. PubMed ID: 15831071 [TBL] [Abstract][Full Text] [Related]
16. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing. Grant S Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046 [TBL] [Abstract][Full Text] [Related]
17. Grasping deficits and adaptations in adults with stereo vision losses. Melmoth DR; Finlay AL; Morgan MJ; Grant S Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3711-20. PubMed ID: 19339741 [TBL] [Abstract][Full Text] [Related]