These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9305820)

  • 21. Functional dissociation between action and perception of object shape in developmental visual object agnosia.
    Freud E; Ganel T; Avidan G; Gilaie-Dotan S
    Cortex; 2016 Mar; 76():17-27. PubMed ID: 26827163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binocular cues are important in controlling the grasp but not the reach in natural prehension movements.
    Watt SJ; Bradshaw MF
    Neuropsychologia; 2000; 38(11):1473-81. PubMed ID: 10906373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of binocular vision in prehension: a kinematic analysis.
    Servos P; Goodale MA; Jakobson LS
    Vision Res; 1992 Aug; 32(8):1513-21. PubMed ID: 1455724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perceptuo-motor interactions during prehension movements.
    Verhagen L; Dijkerman HC; Grol MJ; Toni I
    J Neurosci; 2008 Apr; 28(18):4726-35. PubMed ID: 18448649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of size and binocular information in guiding reaching: insights from virtual reality and visual form agnosia III (of III).
    Wann JP; Mon-Williams M; McIntosh RD; Smyth M; Milner AD
    Exp Brain Res; 2001 Jul; 139(2):143-50. PubMed ID: 11497055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of monocular and binocular cues to distance discrimination in natural scenes.
    McCann BC; Hayhoe MM; Geisler WS
    J Vis; 2018 Apr; 18(4):12. PubMed ID: 29710302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of familiar size in the control of grasping.
    Marotta JJ; Goodale MA
    J Cogn Neurosci; 2001 Jan; 13(1):8-17. PubMed ID: 11224905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.
    Whitwell RL; Milner AD; Cavina-Pratesi C; Barat M; Goodale MA
    Vision Res; 2015 May; 110(Pt B):265-76. PubMed ID: 25199609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binocular cues and the control of prehension.
    Bradshaw MF; Elliott KM; Watt SJ; Hibbard PB; Davies IR; Simpson PJ
    Spat Vis; 2004; 17(1-2):95-110. PubMed ID: 15078014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pictorial cues constrain depth in da Vinci stereopsis.
    Makino Y; Yano M
    Vision Res; 2006 Jan; 46(1-2):91-105. PubMed ID: 16271743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DF's visual brain in action: the role of tactile cues.
    Whitwell RL; Milner AD; Cavina-Pratesi C; Byrne CM; Goodale MA
    Neuropsychologia; 2014 Mar; 55():41-50. PubMed ID: 24300664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual action control does not rely on strangers--effects of pictorial cues under monocular and binocular vision.
    Borchers S; Christensen A; Ziegler L; Himmelbach M
    Neuropsychologia; 2011 Feb; 49(3):556-63. PubMed ID: 21168426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viewing geometry determines the contribution of binocular vision to the online control of grasping.
    Keefe BD; Watt SJ
    Exp Brain Res; 2017 Dec; 235(12):3631-3643. PubMed ID: 28900689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring young infants' sensitivity to height-in-the-picture-plane by contrasting monocular and binocular preferential-looking.
    Tsuruhara A; Corrow S; Kanazawa S; Yamaguchi MK; Yonas A
    Dev Psychobiol; 2014 Jan; 56(1):109-16. PubMed ID: 23280555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perception and action in depth.
    Carey DP; Dijkerman HC; Milner AD
    Conscious Cogn; 1998 Sep; 7(3):438-53. PubMed ID: 9787054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereopsis contributes to the predictive control of grip forces during prehension.
    Mroczkowski CA; Niechwiej-Szwedo E
    Exp Brain Res; 2021 Apr; 239(4):1345-1358. PubMed ID: 33661370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visuomotor sensitivity to visual information about surface orientation.
    Knill DC; Kersten D
    J Neurophysiol; 2004 Mar; 91(3):1350-66. PubMed ID: 14586027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infants' ability to respond to depth from the retinal size of human faces: comparing monocular and binocular preferential-looking.
    Tsuruhara A; Corrow S; Kanazawa S; Yamaguchi MK; Yonas A
    Infant Behav Dev; 2014 Nov; 37(4):562-70. PubMed ID: 25113916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adapting to monocular vision: grasping with one eye.
    Marotta JJ; Perrot TS; Nicolle D; Servos P; Goodale MA
    Exp Brain Res; 1995; 104(1):107-14. PubMed ID: 7621928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.