BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 9305839)

  • 1. The interplay between binding energy and catalysis in the evolution of a catalytic antibody.
    Ulrich HD; Mundorff E; Santarsiero BD; Driggers EM; Stevens RC; Schultz PG
    Nature; 1997 Sep; 389(6648):271-5. PubMed ID: 9305839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD; Schultz PG
    J Mol Biol; 1998 Jan; 275(1):95-111. PubMed ID: 9451442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2008; 14(2):596-602. PubMed ID: 17960540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N; Kakinuma H; Liu L; Nishi Y; Fujii I
    Nat Biotechnol; 2001 Jun; 19(6):563-7. PubMed ID: 11385462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the affinity maturation of antibody 48G7.
    Yang PL; Schultz PG
    J Mol Biol; 1999 Dec; 294(5):1191-201. PubMed ID: 10600377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and fluorescence studies of affinity maturation in related antibodies.
    Pauyo T; Hilinski GJ; Chiu PT; Hansen DE; Choi YJ; Ratner DI; Shah-Mahoney N; Southern CA; O'Hara PB
    Mol Immunol; 2006 Mar; 43(7):812-21. PubMed ID: 16137768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H; Hara T; Tanimura R; Fukuyama S; Cagnon C; Kohara A; Fujii I
    J Mol Biol; 1997 Apr; 267(5):1247-57. PubMed ID: 9150409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA; de Prada P; Deng SX; Mittal A; Braskett M; Zhu X; Wilson IA; Landry DW
    Biochemistry; 2004 Jun; 43(25):8067-76. PubMed ID: 15209502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC; Hanson MA; Varvak A; Ulrich H; Schultz PG; Stevens RC
    Biochemistry; 2000 Feb; 39(4):627-32. PubMed ID: 10651626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution governed by controlling the molecular recognition between an abzyme and its haptenic transition-state analog.
    Takahashi-Ando N; Kakinuma H; Fujii I; Nishi Y
    J Immunol Methods; 2004 Nov; 294(1-2):1-14. PubMed ID: 15604011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the importance of second sphere residues in an esterolytic antibody by phage display.
    Arkin MR; Wells JA
    J Mol Biol; 1998 Dec; 284(4):1083-94. PubMed ID: 9837728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immunological evolution of catalysis.
    Patten PA; Gray NS; Yang PL; Marks CB; Wedemayer GJ; Boniface JJ; Stevens RC; Schultz PG
    Science; 1996 Feb; 271(5252):1086-91. PubMed ID: 8599084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunological origins of binding and catalysis in a Diels-Alderase antibody.
    Romesberg FE; Spiller B; Schultz PG; Stevens RC
    Science; 1998 Mar; 279(5358):1929-33. PubMed ID: 9506942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis on the coastline: theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole.
    Ujaque G; Tantillo DJ; Hu Y; Houk KN; Hotta K; Hilvert D
    J Comput Chem; 2003 Jan; 24(1):98-110. PubMed ID: 12483679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme mimicry by the antiidiotypic antibody approach.
    Kolesnikov AV; Kozyr AV; Alexandrova ES; Koralewski F; Demin AV; Titov MI; Avalle B; Tramontano A; Paul S; Thomas D; Gabibov AG; Friboulet A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13526-31. PubMed ID: 11095704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis of decarboxylation by a preorganized heterogeneous microenvironment: crystal structures of abzyme 21D8.
    Hotta K; Lange H; Tantillo DJ; Houk KN; Hilvert D; Wilson IA
    J Mol Biol; 2000 Oct; 302(5):1213-25. PubMed ID: 11183784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.