These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 9305840)

  • 1. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster.
    Kraaijeveld AR; Godfray HC
    Nature; 1997 Sep; 389(6648):278-80. PubMed ID: 9305840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary change in parasitoid resistance under crowded conditions in Drosophila melanogaster.
    Sanders AE; Scarborough C; Layen SJ; Kraaijeveld AR; Godfray HC
    Evolution; 2005 Jun; 59(6):1292-9. PubMed ID: 16050105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster.
    Fellowes MD; Kraaijeveld AR; Godfray HC
    Proc Biol Sci; 1998 Aug; 265(1405):1553-8. PubMed ID: 9744107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of host resistance and parasitoid counter-resistance.
    Kraaijeveld AR; Godfray HC
    Adv Parasitol; 2009; 70():257-80. PubMed ID: 19773074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural variation in differentiated hemocytes is related to parasitoid resistance in Drosophila melanogaster.
    Gerritsma S; Haan Ad; Zande Lv; Wertheim B
    J Insect Physiol; 2013 Feb; 59(2):148-58. PubMed ID: 23123513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No trade-off between learning ability and parasitoid resistance in Drosophila melanogaster.
    Kolss M; Kraaijeveld AR; Mery F; Kawecki TJ
    J Evol Biol; 2006 Jul; 19(4):1359-63. PubMed ID: 16780538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of dietary yeast on the cellular immune response of Drosophila melanogaster against the larval parasitoid, Leptopilina boulardi.
    Vass E; Nappi AJ
    J Parasitol; 1998 Aug; 84(4):870-2. PubMed ID: 9714230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged oviposition decreases the ability of the parasitoid Leptopilina boulardi to suppress the cellular immune response of its host Drosophila melanogaster.
    Vass E; Nappi AJ
    Exp Parasitol; 1998 May; 89(1):86-91. PubMed ID: 9603493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs.
    Vijendravarma RK; Kraaijeveld AR; Godfray HC
    Evolution; 2009 Jan; 63(1):104-14. PubMed ID: 18786186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basis of the trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster.
    Kraaijeveld AR; Limentani EC; Godfray HC
    Proc Biol Sci; 2001 Feb; 268(1464):259-61. PubMed ID: 11217895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific variation in the effects of parasitism by Asobara tabida on phenoloxidase activity of Drosophila melanogaster larvae.
    Moreau SJ; Doury G; Giordanengo P
    J Invertebr Pathol; 2000 Aug; 76(2):151-3. PubMed ID: 11023741
    [No Abstract]   [Full Text] [Related]  

  • 12. Environment-dependent trade-offs between ectoparasite resistance and larval competitive ability in the Drosophila-Macrocheles system.
    Luong LT; Polak M
    Heredity (Edinb); 2007 Dec; 99(6):632-40. PubMed ID: 17700633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversely to its sibling Drosophila melanogaster, D. simulans overcomes the immunosuppressive effects of the parasitoid Asobara citri.
    Moreau SJ; Guillot S; Populaire C; Doury G; Prévost G; Eslin P
    Dev Comp Immunol; 2005; 29(3):205-9. PubMed ID: 15572069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics of the evolution of increased resistance to parasitism in Drosophila.
    Wertheim B; Kraaijeveld AR; Hopkins MG; Walther Boer M; Godfray HC
    Mol Ecol; 2011 Mar; 20(5):932-49. PubMed ID: 21062384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary interactions between Drosophila melanogaster and its parasitoid Asobara tabida.
    Green DM; Kraaijeveld AR; Godfray HC
    Heredity (Edinb); 2000 Nov; 85 Pt 5():450-8. PubMed ID: 11122423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defense traits of larval Drosophila melanogaster exhibit genetically based trade-offs against different species of parasitoids.
    Hodges TK; Laskowski KL; Squadrito GL; De Luca M; Leips J
    Evolution; 2013 Mar; 67(3):749-60. PubMed ID: 23461325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venom components of Asobara japonica impair cellular immune responses of host Drosophila melanogaster.
    Furihata SX; Matsumoto H; Kimura MT; Hayakawa Y
    Arch Insect Biochem Physiol; 2013 Jun; 83(2):86-100. PubMed ID: 23606512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Costs of resistance in the Drosophila-macrocheles system: a negative genetic correlation between ectoparasite resistance and reproduction.
    Luong LT; Polak M
    Evolution; 2007 Jun; 61(6):1391-402. PubMed ID: 17542848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CROSS-RESISTANCE FOLLOWING ARTIFICIAL SELECTION FOR INCREASED DEFENSE AGAINST PARASITOIDS IN DROSOPHILA MELANOGASTER.
    Fellowes MDE; Kraaijeveld AR; Godfray HCJ
    Evolution; 1999 Jun; 53(3):966-972. PubMed ID: 28565619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexual selection and immune function in Drosophila melanogaster.
    McKean KA; Nunney L
    Evolution; 2008 Feb; 62(2):386-400. PubMed ID: 18070086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.