These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9305845)
1. Stimulation of CFTR activity by its phosphorylated R domain. Winter MC; Welsh MJ Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845 [TBL] [Abstract][Full Text] [Related]
2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
3. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates. Sugita M; Yue Y; Foskett JK EMBO J; 1998 Feb; 17(4):898-908. PubMed ID: 9463368 [TBL] [Abstract][Full Text] [Related]
4. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran. Hughes LK; Ju M; Sheppard DN Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824 [TBL] [Abstract][Full Text] [Related]
5. Model of the cAMP activation of chloride transport by CFTR channel and the mechanism of potentiators. Moran O J Theor Biol; 2010 Jan; 262(1):73-9. PubMed ID: 19766125 [TBL] [Abstract][Full Text] [Related]
6. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Chen JH J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849 [TBL] [Abstract][Full Text] [Related]
7. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Neville DC; Rozanas CR; Tulk BM; Townsend RR; Verkman AS Biochemistry; 1998 Feb; 37(8):2401-9. PubMed ID: 9485388 [TBL] [Abstract][Full Text] [Related]
8. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022 [TBL] [Abstract][Full Text] [Related]
9. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR). Bompadre SG; Ai T; Cho JH; Wang X; Sohma Y; Li M; Hwang TC J Gen Physiol; 2005 Apr; 125(4):361-75. PubMed ID: 15767295 [TBL] [Abstract][Full Text] [Related]
10. The intact CFTR protein mediates ATPase rather than adenylate kinase activity. Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200 [TBL] [Abstract][Full Text] [Related]
11. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Lu NT; Pedersen PL Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244 [TBL] [Abstract][Full Text] [Related]
12. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Ramjeesingh M; Li C; Garami E; Huan LJ; Galley K; Wang Y; Bear CE Biochemistry; 1999 Feb; 38(5):1463-8. PubMed ID: 9931011 [TBL] [Abstract][Full Text] [Related]
13. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W; Bernard K; Li G; Kirk KL J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710 [TBL] [Abstract][Full Text] [Related]
14. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Mihályi C; Iordanov I; Töröcsik B; Csanády L Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21740-21746. PubMed ID: 32817533 [TBL] [Abstract][Full Text] [Related]
15. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. Ma J; Zhao J; Drumm ML; Xie J; Davis PB J Biol Chem; 1997 Oct; 272(44):28133-41. PubMed ID: 9346969 [TBL] [Abstract][Full Text] [Related]
16. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296 [TBL] [Abstract][Full Text] [Related]
17. ATP hydrolysis cycles and the gating of CFTR Cl- channels. Gadsby DC; Dousmanis AG; Nairn AC Acta Physiol Scand Suppl; 1998 Aug; 643():247-56. PubMed ID: 9789567 [TBL] [Abstract][Full Text] [Related]
18. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating. Fu J; Ji HL; Naren AP; Kirk KL J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681 [TBL] [Abstract][Full Text] [Related]
19. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator. Wang G J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651 [TBL] [Abstract][Full Text] [Related]
20. Mutation of potential phosphorylation sites in the recombinant R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on domain conformation. Dulhanty AM; Chang XB; Riordan JR Biochem Biophys Res Commun; 1995 Jan; 206(1):207-14. PubMed ID: 7529497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]