These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 9305873)
1. Aspartate 19 and glutamate 121 are critical for transport function of the myo-inositol/H+ symporter from Leishmania donovani. Seyfang A; Kavanaugh MP; Landfear SM J Biol Chem; 1997 Sep; 272(39):24210-5. PubMed ID: 9305873 [TBL] [Abstract][Full Text] [Related]
2. Four conserved cytoplasmic sequence motifs are important for transport function of the Leishmania inositol/H(+) symporter. Seyfang A; Landfear SM J Biol Chem; 2000 Feb; 275(8):5687-93. PubMed ID: 10681553 [TBL] [Abstract][Full Text] [Related]
3. Substrate specificity of the Leishmania donovani myo-inositol transporter: critical role of inositol C-2, C-3 and C-5 hydroxyl groups. Mongan TP; Ganapasam S; Hobbs SB; Seyfang A Mol Biochem Parasitol; 2004 May; 135(1):133-41. PubMed ID: 15287594 [TBL] [Abstract][Full Text] [Related]
4. Functional expression of a myo-inositol/H+ symporter from Leishmania donovani. Drew ME; Langford CK; Klamo EM; Russell DG; Kavanaugh MP; Landfear SM Mol Cell Biol; 1995 Oct; 15(10):5508-15. PubMed ID: 7565702 [TBL] [Abstract][Full Text] [Related]
5. Kinetics and stoichiometry of a proton/myo-inositol cotransporter. Klamo EM; Drew ME; Landfear SM; Kavanaugh MP J Biol Chem; 1996 Jun; 271(25):14937-43. PubMed ID: 8663013 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of an inosine-guanosine transporter from Leishmania donovani. The role of conserved residues, aspartate 389 and arginine 393. Arastu-Kapur S; Ford E; Ullman B; Carter NS J Biol Chem; 2003 Aug; 278(35):33327-33. PubMed ID: 12807872 [TBL] [Abstract][Full Text] [Related]
7. Substrate depletion upregulates uptake of myo-inositol, glucose and adenosine in Leishmania. Seyfang A; Landfear SM Mol Biochem Parasitol; 1999 Oct; 104(1):121-30. PubMed ID: 10589986 [TBL] [Abstract][Full Text] [Related]
8. Interactions between charged amino acid residues within transmembrane helices in the sulfate transporter SHST1. Shelden MC; Loughlin P; Tierney ML; Howitt SM Biochemistry; 2003 Nov; 42(44):12941-9. PubMed ID: 14596609 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive examination of charged intramembrane residues in a nucleoside transporter. Valdés R; Liu W; Ullman B; Landfear SM J Biol Chem; 2006 Aug; 281(32):22647-55. PubMed ID: 16769726 [TBL] [Abstract][Full Text] [Related]
10. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of mouse erythroid band 3-mediated chloride transport by site-directed mutagenesis of histidine residues and its reversal by second site mutation of Lys 558, the locus of covalent H2DIDS binding. Müller-Berger S; Karbach D; König J; Lepke S; Wood PG; Appelhans H; Passow H Biochemistry; 1995 Jul; 34(29):9315-24. PubMed ID: 7626600 [TBL] [Abstract][Full Text] [Related]
12. Effect of extracellular pH on the myo-inositol transporter SMIT expressed in Xenopus oocytes. Matskevitch J; Wagner CA; Risler T; Kwon HM; Handler JS; Waldegger S; Busch AE; Lang F Pflugers Arch; 1998 Nov; 436(6):854-7. PubMed ID: 9799398 [TBL] [Abstract][Full Text] [Related]
13. K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity. Liu Z; Stevens BR; Feldman DH; Hediger MA; Harvey WR J Exp Biol; 2003 Jan; 206(Pt 2):245-54. PubMed ID: 12477895 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of aspartate residues in the transmembrane regions and cytoplasmic loops of rat vesicular acetylcholine transporter. Kim MH; Lu M; Lim EJ; Chai YG; Hersh LB J Biol Chem; 1999 Jan; 274(2):673-80. PubMed ID: 9873001 [TBL] [Abstract][Full Text] [Related]
15. Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. Uldry M; Ibberson M; Horisberger JD; Chatton JY; Riederer BM; Thorens B EMBO J; 2001 Aug; 20(16):4467-77. PubMed ID: 11500374 [TBL] [Abstract][Full Text] [Related]
16. Passive water permeability of some wild type and mutagenized amino acid cotransporters of the SLC6/NSS family expressed in Xenopus laevis oocytes. Santacroce M; Castagna M; Sacchi VF Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):509-17. PubMed ID: 20394832 [TBL] [Abstract][Full Text] [Related]
17. Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1? Grewer C; Watzke N; Rauen T; Bicho A J Biol Chem; 2003 Jan; 278(4):2585-92. PubMed ID: 12419818 [TBL] [Abstract][Full Text] [Related]
18. A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Lasry I; Berman B; Straussberg R; Sofer Y; Bessler H; Sharkia M; Glaser F; Jansen G; Drori S; Assaraf YG Blood; 2008 Sep; 112(5):2055-61. PubMed ID: 18559978 [TBL] [Abstract][Full Text] [Related]
19. Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Gorboulev V; Volk C; Arndt P; Akhoundova A; Koepsell H Mol Pharmacol; 1999 Dec; 56(6):1254-61. PubMed ID: 10570053 [TBL] [Abstract][Full Text] [Related]
20. Abolition of substrate-dependent currents by tyrosine mutation in the transmembrane domain of glutamate transporter. Choi I; Chiu SY FEBS Lett; 1997 Mar; 405(2):133-6. PubMed ID: 9089276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]