These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 9305879)
1. Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. Suske WA; Held M; Schmid A; Fleischmann T; Wubbolts MG; Kohler HP J Biol Chem; 1997 Sep; 272(39):24257-65. PubMed ID: 9305879 [TBL] [Abstract][Full Text] [Related]
2. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1. Suske WA; van Berkel WJ; Kohler HP J Biol Chem; 1999 Nov; 274(47):33355-65. PubMed ID: 10559214 [TBL] [Abstract][Full Text] [Related]
3. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution. Jensen CN; Mielke T; Farrugia JE; Frank A; Man H; Hart S; Turkenburg JP; Grogan G Chembiochem; 2015 Apr; 16(6):968-76. PubMed ID: 25737306 [TBL] [Abstract][Full Text] [Related]
4. Changing the substrate reactivity of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica HBP1 by directed evolution. Meyer A; Schmid A; Held M; Westphal AH; Rothlisberger M; Kohler HP; van Berkel WJ; Witholt B J Biol Chem; 2002 Feb; 277(7):5575-82. PubMed ID: 11733527 [TBL] [Abstract][Full Text] [Related]
5. A crystal structure of 2-hydroxybiphenyl 3-monooxygenase with bound substrate provides insights into the enzymatic mechanism. Kanteev M; Bregman-Cohen A; Deri B; Shahar A; Adir N; Fishman A Biochim Biophys Acta; 2015 Dec; 1854(12):1906-1913. PubMed ID: 26275805 [TBL] [Abstract][Full Text] [Related]
6. Purification and characterisation of 3-hydroxyphenylacetate 6-hydroxylase: a novel FAD-dependent monooxygenase from a Flavobacterium species. Van Berkel WJ; Van Den Tweel WJ Eur J Biochem; 1991 Nov; 201(3):585-92. PubMed ID: 1935954 [TBL] [Abstract][Full Text] [Related]
7. Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. Meyer A; Würsten M; Schmid A; Kohler HP; Witholt B J Biol Chem; 2002 Sep; 277(37):34161-7. PubMed ID: 12105208 [TBL] [Abstract][Full Text] [Related]
8. Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eppink MH; Cammaart E; Van Wassenaar D; Middelhoven WJ; van Berkel WJ Eur J Biochem; 2000 Dec; 267(23):6832-40. PubMed ID: 11082194 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. Wieser M; Wagner B; Eberspächer J; Lingens F J Bacteriol; 1997 Jan; 179(1):202-8. PubMed ID: 8981999 [TBL] [Abstract][Full Text] [Related]
11. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01. Ohta Y; Higgins I; Ribbons DW J Biol Chem; 1975 May; 250(10):3814-25. PubMed ID: 1126936 [TBL] [Abstract][Full Text] [Related]
12. Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. Kirchner U; Westphal AH; Müller R; van Berkel WJ J Biol Chem; 2003 Nov; 278(48):47545-53. PubMed ID: 12968028 [TBL] [Abstract][Full Text] [Related]
13. 4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3. Purification, characterization, gene cloning, sequence analysis and assignment of structural features determining the coenzyme specificity. Seibold B; Matthes M; Eppink MH; Lingens F; Van Berkel WJ; Müller R Eur J Biochem; 1996 Jul; 239(2):469-78. PubMed ID: 8706756 [TBL] [Abstract][Full Text] [Related]
14. Purification and characterization of the ncgl2923 -encoded 3-hydroxybenzoate 6-hydroxylase from Corynebacterium glutamicum. Yang YF; Zhang JJ; Wang SH; Zhou NY J Basic Microbiol; 2010 Dec; 50(6):599-604. PubMed ID: 20806251 [TBL] [Abstract][Full Text] [Related]
15. Degradation of 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl by Pseudomonas sp. strain HBP1. Kohler HP; Kohler-Staub D; Focht DD Appl Environ Microbiol; 1988 Nov; 54(11):2683-8. PubMed ID: 3214154 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Shaw JP; Harayama S Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782 [TBL] [Abstract][Full Text] [Related]
17. Conformational transitions induced by NADH binding promote reduction half-reaction in 2-hydroxybiphenyl-3-monooxygenase catalytic cycle. Kopylov K; Kirilin E; Švedas V Biochem Biophys Res Commun; 2023 Jan; 639():77-83. PubMed ID: 36470075 [TBL] [Abstract][Full Text] [Related]
18. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. Ge L; Seah SY J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659 [TBL] [Abstract][Full Text] [Related]
19. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. Jaspers MC; Suske WA; Schmid A; Goslings DA; Kohler HP; van der Meer JR J Bacteriol; 2000 Jan; 182(2):405-17. PubMed ID: 10629187 [TBL] [Abstract][Full Text] [Related]