These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 9306968)
21. In situ Ia expression on brain cells in the rat: autoimmune encephalomyelitis-resistant strain (BN) and susceptible strain (Lewis) compared. Matsumoto Y; Kawai K; Fujiwara M Immunology; 1989 Apr; 66(4):621-7. PubMed ID: 2785488 [TBL] [Abstract][Full Text] [Related]
22. Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. Almolda B; González B; Castellano B J Neuroimmunol; 2010 Jun; 223(1-2):39-54. PubMed ID: 20451260 [TBL] [Abstract][Full Text] [Related]
23. In situ demonstration of proliferating cells in the rat central nervous system during experimental autoimmune encephalomyelitis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Ohmori K; Hong Y; Fujiwara M; Matsumoto Y Lab Invest; 1992 Jan; 66(1):54-62. PubMed ID: 1731149 [TBL] [Abstract][Full Text] [Related]
24. Differential modulatory effect of NGF on MHC class I and class II expression in spinal cord cells of EAE rats. Stampachiacchiere B; Aloe L J Neuroimmunol; 2005 Dec; 169(1-2):20-30. PubMed ID: 16169604 [TBL] [Abstract][Full Text] [Related]
25. [Activation of T cells in experimental autoimmune encephalomyelitis and multiple sclerosis]. Rodríguez-Rodríguez Y; Suárez-Luis I Rev Neurol; 2003 Apr 1-15; 36(7):649-52. PubMed ID: 12666047 [TBL] [Abstract][Full Text] [Related]
26. Expression of chemokine receptors CCR7 and CCR8 in the CNS during ChREAE. Bielecki B; Mazurek A; Wolinski P; Glabinski A Scand J Immunol; 2007 Oct; 66(4):383-92. PubMed ID: 17850582 [TBL] [Abstract][Full Text] [Related]
27. The use of digital technology to asses the severity of the Experimental Allergic Encephalomyelitis (EAE) spinal cord lesion. Mohamed A; Tarhuni H; Dufan T; Benghuzzi H; Tucci M Biomed Sci Instrum; 2004; 40():419-23. PubMed ID: 15133994 [TBL] [Abstract][Full Text] [Related]
28. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. Ellestad KK; Tsutsui S; Noorbakhsh F; Warren KG; Yong VW; Pittman QJ; Power C J Immunol; 2009 Jul; 183(1):298-309. PubMed ID: 19542441 [TBL] [Abstract][Full Text] [Related]
29. Effects of the angiotensin converting enzyme inhibitor captopril on experimental autoimmune encephalomyelitis. Constantinescu CS; Ventura E; Hilliard B; Rostami A Immunopharmacol Immunotoxicol; 1995 Aug; 17(3):471-91. PubMed ID: 8576541 [TBL] [Abstract][Full Text] [Related]
30. Regulation of gene expression associated with acute experimental autoimmune encephalomyelitis by Lovastatin. Paintlia AS; Paintlia MK; Singh AK; Stanislaus R; Gilg AG; Barbosa E; Singh I J Neurosci Res; 2004 Jul; 77(1):63-81. PubMed ID: 15197739 [TBL] [Abstract][Full Text] [Related]
31. Analysis of the cellular infiltrate in the iris during experimental autoimmune encephalomyelitis. de Vos AF; Dick AD; Klooster J; Broersma L; McMenamin PG; Kijlstra A Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3001-10. PubMed ID: 10967057 [TBL] [Abstract][Full Text] [Related]
32. Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model. Jung EJ; Hur M; Kim YL; Lee GH; Kim J; Kim I; Lee M; Han HK; Kim MS; Hwang S; Kim S; Woo AM; Yoon Y; Park HJ; Won J J Pharmacol Exp Ther; 2009 Dec; 331(3):1005-13. PubMed ID: 19741152 [TBL] [Abstract][Full Text] [Related]
33. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Weller RO; Engelhardt B; Phillips MJ Brain Pathol; 1996 Jul; 6(3):275-88. PubMed ID: 8864284 [TBL] [Abstract][Full Text] [Related]
34. Role of chemokines, neuronal projections, and the blood-brain barrier in the enhancement of cerebral EAE following focal brain damage. Sun D; Tani M; Newman TA; Krivacic K; Phillips M; Chernosky A; Gill P; Wei T; Griswold KJ; Ransohoff RM; Weller RO J Neuropathol Exp Neurol; 2000 Dec; 59(12):1031-43. PubMed ID: 11138923 [TBL] [Abstract][Full Text] [Related]
35. Experimental autoimmune encephalomyelitis. Qualitative and semiquantitative differences in heat shock protein 60 expression in the central nervous system. Gao YL; Brosnan CF; Raine CS J Immunol; 1995 Apr; 154(7):3548-56. PubMed ID: 7897234 [TBL] [Abstract][Full Text] [Related]
36. Induction of experimental autoimmune encephalomyelitis in Lewis rats by a viral peptide with limited homology to myelin basic protein. Mao YS; Lu CZ; Wang X; Xiao BG Exp Neurol; 2007 Aug; 206(2):231-9. PubMed ID: 17617406 [TBL] [Abstract][Full Text] [Related]
37. Role of MHC class II expressing CD4+ T cells in proteolipid protein(91-110)-induced EAE in HLA-DR3 transgenic mice. Mangalam A; Rodriguez M; David C Eur J Immunol; 2006 Dec; 36(12):3356-70. PubMed ID: 17125142 [TBL] [Abstract][Full Text] [Related]
38. Induction of EAE by T cells specific for alpha B-crystallin depends on prior viral infection in the CNS. Verbeek R; van Dongen H; Wawrousek EF; Amor S; van Noort JM Int Immunol; 2007 Mar; 19(3):277-85. PubMed ID: 17267417 [TBL] [Abstract][Full Text] [Related]
39. [Magnetic Resonance Imaging study of the role of the blood-brain barrier in the pathogenesis of experimental allergic encephalomyelitis: application to multiple sclerosis]. Chambron J; Namer IJ; Steibel J; Gounot D; Armspach JP Bull Acad Natl Med; 1994 Dec; 178(9):1647-63; discussion 1663-5. PubMed ID: 7788436 [TBL] [Abstract][Full Text] [Related]
40. Identification and quantitation of T lymphocyte subsets found in the spinal cord of the Lewis rat during acute experimental allergic encephalomyelitis. Hickey WF; Gonatas NK; Kimura H; Wilson DB J Immunol; 1983 Dec; 131(6):2805-9. PubMed ID: 6605991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]