These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 9307017)
1. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Neuhauser W; Haltrich D; Kulbe KD; Nidetzky B Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):683-92. PubMed ID: 9307017 [TBL] [Abstract][Full Text] [Related]
2. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B; Klimacek M; Mayr P Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616 [TBL] [Abstract][Full Text] [Related]
3. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis. Nidetzky B; Mayr P; Neuhauser W; Puchberger M Chem Biol Interact; 2001 Jan; 130-132(1-3):583-95. PubMed ID: 11306077 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Kratzer R; Nidetzky B Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715 [TBL] [Abstract][Full Text] [Related]
6. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Verduyn C; Van Kleef R; Frank J; Schreuder H; Van Dijken JP; Scheffers WA Biochem J; 1985 Mar; 226(3):669-77. PubMed ID: 3921014 [TBL] [Abstract][Full Text] [Related]
7. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Nidetzky B; Brüggler K; Kratzer R; Mayr P J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376 [TBL] [Abstract][Full Text] [Related]
8. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Nidetzky B; Mayr P; Hadwiger P; Stütz AE Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539 [TBL] [Abstract][Full Text] [Related]
9. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Lee JK; Koo BS; Kim SY Appl Environ Microbiol; 2003 Oct; 69(10):6179-88. PubMed ID: 14532079 [TBL] [Abstract][Full Text] [Related]
10. Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435. Kern M; Haltrich D; Nidetzky B; Kulbe KD FEMS Microbiol Lett; 1997 Apr; 149(1):31-7. PubMed ID: 9103975 [TBL] [Abstract][Full Text] [Related]
11. D-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. Mayr P; Brüggler K; Kulbe KD; Nidetzky B J Chromatogr B Biomed Sci Appl; 2000 Jan; 737(1-2):195-202. PubMed ID: 10681056 [TBL] [Abstract][Full Text] [Related]
12. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of a novel erythrose reductase from Candida magnoliae. Lee JK; Kim SY; Ryu YW; Seo JH; Kim JH Appl Environ Microbiol; 2003 Jul; 69(7):3710-8. PubMed ID: 12839736 [TBL] [Abstract][Full Text] [Related]
14. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5). Pival SL; Klimacek M; Kratzer R; Nidetzky B FEBS Lett; 2008 Dec; 582(29):4095-9. PubMed ID: 19026644 [TBL] [Abstract][Full Text] [Related]
15. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
16. Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization, and detailed analysis of the substrate binding pocket using structure-activity relationships. Mayr P; Petschacher B; Nidetzky B J Biochem; 2003 Apr; 133(4):553-62. PubMed ID: 12761304 [TBL] [Abstract][Full Text] [Related]
17. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis. Mayr P; Nidetzky B Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638 [TBL] [Abstract][Full Text] [Related]
18. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
19. Noncovalent enzyme-substrate interactions in the catalytic mechanism of yeast aldose reductase. Neuhauser W; Haltrich D; Kulbe KD; Nidetzky B Biochemistry; 1998 Jan; 37(4):1116-23. PubMed ID: 9454604 [TBL] [Abstract][Full Text] [Related]
20. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site. Pival SL; Klimacek M; Nidetzky B Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]