These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 9307017)
21. Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Ho NW; Lin FP; Huang S; Andrews PC; Tsao GT Enzyme Microb Technol; 1990 Jan; 12(1):33-9. PubMed ID: 1367448 [TBL] [Abstract][Full Text] [Related]
22. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Kratzer R; Leitgeb S; Wilson DK; Nidetzky B Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198 [TBL] [Abstract][Full Text] [Related]
23. Characterization of aldose reductase and aldehyde reductase from rat testis. Kawasaki N; Tanimoto T; Tanaka A Biochim Biophys Acta; 1989 Jun; 996(1-2):30-6. PubMed ID: 2500152 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis. Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423 [TBL] [Abstract][Full Text] [Related]
25. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986 [TBL] [Abstract][Full Text] [Related]
26. Mechanism of human aldehyde reductase: characterization of the active site pocket. Barski OA; Gabbay KH; Grimshaw CE; Bohren KM Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785 [TBL] [Abstract][Full Text] [Related]
27. Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. Zhang F; Qiao D; Xu H; Liao C; Li S; Cao Y J Microbiol; 2009 Jun; 47(3):351-7. PubMed ID: 19557353 [TBL] [Abstract][Full Text] [Related]
28. Engineering Candida tenuis Xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Petschacher B; Nidetzky B Appl Environ Microbiol; 2005 Oct; 71(10):6390-3. PubMed ID: 16204564 [TBL] [Abstract][Full Text] [Related]
29. Human aldose reductase: rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14356-65. PubMed ID: 7578039 [TBL] [Abstract][Full Text] [Related]
30. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. Pratter SM; Eixelsberger T; Nidetzky B Bioresour Technol; 2015 Dec; 198():732-8. PubMed ID: 26452180 [TBL] [Abstract][Full Text] [Related]
31. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019 [TBL] [Abstract][Full Text] [Related]
32. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii. Mayerhoff ZD; Roberto IC; Franco TT Appl Microbiol Biotechnol; 2006 May; 70(6):761-7. PubMed ID: 16505992 [TBL] [Abstract][Full Text] [Related]
33. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochemistry; 2002 Jul; 41(28):8785-95. PubMed ID: 12102621 [TBL] [Abstract][Full Text] [Related]
34. Affinity purification and properties of porcine brain aldose reductase. Boghosian RA; McGuinness ET Biochim Biophys Acta; 1979 Apr; 567(2):278-86. PubMed ID: 36151 [TBL] [Abstract][Full Text] [Related]
35. Localization, isolation and properties of three NADPH-dependent aldehyde reducing enzymes from dog kidney. Ohta M; Tanimoto T; Tanaka A Biochim Biophys Acta; 1991 Jul; 1078(3):395-403. PubMed ID: 1907200 [TBL] [Abstract][Full Text] [Related]
36. Purification and characterization of aldose reductase and aldehyde reductase from human kidney. Ansari NH; Bhatnagar A; Liu SQ; Srivastava SK Biochem Int; 1991 Nov; 25(4):755-65. PubMed ID: 1815509 [TBL] [Abstract][Full Text] [Related]
37. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274-->Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+. Leitgeb S; Petschacher B; Wilson DK; Nidetzky B FEBS Lett; 2005 Jan; 579(3):763-7. PubMed ID: 15670843 [TBL] [Abstract][Full Text] [Related]
38. Purification and characterization of human testis aldose and aldehyde reductase. Tanimoto T; Ohta M; Tanaka A; Ikemoto I; Machida T Int J Biochem; 1991; 23(4):421-8. PubMed ID: 1901806 [TBL] [Abstract][Full Text] [Related]
39. Residues affecting the catalysis and inhibition of rat lens aldose reductase. Carper DA; Hohman TC; Old SE Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733 [TBL] [Abstract][Full Text] [Related]
40. Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase. Zhang Y; Lee H FEMS Microbiol Lett; 1997 Feb; 147(2):227-32. PubMed ID: 9119198 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]