These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9307434)

  • 1. Production of phytochelatins in the marine diatom Phaeodactylum tricornutum in response to copper and cadmium exposure.
    Morelli E; Pratesi E
    Bull Environ Contam Toxicol; 1997 Oct; 59(4):657-64. PubMed ID: 9307434
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of cadmium- and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure.
    Scarano G; Morelli E
    Biometals; 2002 Jun; 15(2):145-51. PubMed ID: 12046922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters.
    Morelli E; Fantozzi L
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):236-41. PubMed ID: 18575794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum.
    Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I
    FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium.
    Smith CL; Steele JE; Stauber JL; Jolley DF
    Aquat Toxicol; 2014 Nov; 156():211-20. PubMed ID: 25261820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of metal combinations on the production of phytochelatins and glutathione by the marine diatom Phaeodactylum tricornutum.
    Kawakami SK; Gledhill M; Achterberg EP
    Biometals; 2006 Feb; 19(1):51-60. PubMed ID: 16502331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum.
    Nassiri Y; Mansot JL; Wéry J; Ginsburger-Vogel T; Amiard JC
    Arch Environ Contam Toxicol; 1997 Aug; 33(2):147-55. PubMed ID: 9294242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom.
    Wu Y; Guo Z; Zhang W; Tan Q; Zhang L; Ge X; Chen M
    Sci Rep; 2016 Oct; 6():35935. PubMed ID: 27779209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: Importance of uptake and elimination.
    Angel BM; Simpson SL; Chariton AA; Stauber JL; Jolley DF
    Aquat Toxicol; 2015 Jul; 164():1-9. PubMed ID: 25911575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum.
    Morelli E; Scarano G
    Mar Environ Res; 2001 Oct; 52(4):383-95. PubMed ID: 11695656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum.
    Ma J; Zhou B; Chen F; Pan K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111715. PubMed ID: 33396046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: exposure to cadmium.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):377-86. PubMed ID: 21216348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and physiological responses of a marine diatom (Phaeodactylum tricornutum) against two imidazolium-based ionic liquids ([C
    Deng XY; Chen B; Li D; Hu XL; Cheng J; Gao K; Wang CH
    Aquat Toxicol; 2017 Aug; 189():115-122. PubMed ID: 28618302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different responses of the marine diatom Phaeodactylum tricornutum to copper toxicity.
    Reiriz S; Cid A; Torres E; Abalde J; Herrero C
    Microbiologia; 1994 Sep; 10(3):263-72. PubMed ID: 7873102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific acclimations to phosphorus limitation in the marine diatom Phaeodactylum tricornutum.
    Dell'Aquila G; Maier UG
    Biol Chem; 2020 Nov; 401(12):1495-1501. PubMed ID: 32845857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach.
    Poirier I; Pallud M; Kuhn L; Hammann P; Demortière A; Jamali A; Chicher J; Caplat C; Gallon RK; Bertrand M
    Ecotoxicol Environ Saf; 2018 May; 152():78-90. PubMed ID: 29407785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrations of selected heavy metals in benthic diatoms and sediment in the Westerschelde estuary.
    Absil MC; van Scheppingen Y
    Bull Environ Contam Toxicol; 1996 Jun; 56(6):1008-15. PubMed ID: 8661893
    [No Abstract]   [Full Text] [Related]  

  • 18. The roles of silicon in combating cadmium challenge in the Marine diatom Phaeodactylum tricornutum.
    Ma J; Zhou B; Tan Q; Zhang L; Pan K
    J Hazard Mater; 2020 May; 389():121903. PubMed ID: 31879097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using transcriptomic profiles in the diatom Phaeodactylum tricornutum to identify and prioritize stressors.
    Osborn HL; Hook SE
    Aquat Toxicol; 2013 Aug; 138-139():12-25. PubMed ID: 23680677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.
    Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W
    Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.