These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 9307579)
1. New insights into the neuropathology and cell biology of Alzheimer's disease. Weldon DT; Maggio JE; Mantyh PW Geriatrics; 1997 Sep; 52 Suppl 2():S13-6. PubMed ID: 9307579 [TBL] [Abstract][Full Text] [Related]
2. Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. Li M; Pisalyaput K; Galvan M; Tenner AJ J Neurochem; 2004 Nov; 91(3):623-33. PubMed ID: 15485493 [TBL] [Abstract][Full Text] [Related]
3. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Yan SD; Chen X; Fu J; Chen M; Zhu H; Roher A; Slattery T; Zhao L; Nagashima M; Morser J; Migheli A; Nawroth P; Stern D; Schmidt AM Nature; 1996 Aug; 382(6593):685-91. PubMed ID: 8751438 [TBL] [Abstract][Full Text] [Related]
4. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Donahue JE; Flaherty SL; Johanson CE; Duncan JA; Silverberg GD; Miller MC; Tavares R; Yang W; Wu Q; Sabo E; Hovanesian V; Stopa EG Acta Neuropathol; 2006 Oct; 112(4):405-15. PubMed ID: 16865397 [TBL] [Abstract][Full Text] [Related]
5. Possible role of scavenger receptor SRCL in the clearance of amyloid-beta in Alzheimer's disease. Nakamura K; Ohya W; Funakoshi H; Sakaguchi G; Kato A; Takeda M; Kudo T; Nakamura T J Neurosci Res; 2006 Sep; 84(4):874-90. PubMed ID: 16868960 [TBL] [Abstract][Full Text] [Related]
6. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Lue LF; Walker DG; Brachova L; Beach TG; Rogers J; Schmidt AM; Stern DM; Yan SD Exp Neurol; 2001 Sep; 171(1):29-45. PubMed ID: 11520119 [TBL] [Abstract][Full Text] [Related]
7. Scavenger receptor control of chromogranin A-induced microglial stress and neurotoxic cascades. Hooper C; Fry VA; Sevastou IG; Pocock JM FEBS Lett; 2009 Nov; 583(21):3461-6. PubMed ID: 19800883 [TBL] [Abstract][Full Text] [Related]
8. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. El Khoury J; Hickman SE; Thomas CA; Cao L; Silverstein SC; Loike JD Nature; 1996 Aug; 382(6593):716-9. PubMed ID: 8751442 [TBL] [Abstract][Full Text] [Related]
9. The role of RAGE in amyloid-beta peptide-mediated pathology in Alzheimer's disease. Schmidt AM; Sahagan B; Nelson RB; Selmer J; Rothlein R; Bell JM Curr Opin Investig Drugs; 2009 Jul; 10(7):672-80. PubMed ID: 19579173 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. El Khoury J; Luster AD Trends Pharmacol Sci; 2008 Dec; 29(12):626-32. PubMed ID: 18835047 [TBL] [Abstract][Full Text] [Related]
11. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Heneka MT; Sastre M; Dumitrescu-Ozimek L; Hanke A; Dewachter I; Kuiperi C; O'Banion K; Klockgether T; Van Leuven F; Landreth GE Brain; 2005 Jun; 128(Pt 6):1442-53. PubMed ID: 15817521 [TBL] [Abstract][Full Text] [Related]
12. The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines. Chiarini A; Dal Pra I; Whitfield JF; Armato U Ital J Anat Embryol; 2006; 111(4):221-46. PubMed ID: 17385278 [TBL] [Abstract][Full Text] [Related]
13. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. Mohri I; Kadoyama K; Kanekiyo T; Sato Y; Kagitani-Shimono K; Saito Y; Suzuki K; Kudo T; Takeda M; Urade Y; Murayama S; Taniike M J Neuropathol Exp Neurol; 2007 Jun; 66(6):469-80. PubMed ID: 17549007 [TBL] [Abstract][Full Text] [Related]
14. In vivo conversion of racemized beta-amyloid ([D-Ser 26]A beta 1-40) to truncated and toxic fragments ([D-Ser 26]A beta 25-35/40) and fragment presence in the brains of Alzheimer's patients. Kubo T; Nishimura S; Kumagae Y; Kaneko I J Neurosci Res; 2002 Nov; 70(3):474-83. PubMed ID: 12391608 [TBL] [Abstract][Full Text] [Related]
15. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Nagele RG; Wegiel J; Venkataraman V; Imaki H; Wang KC; Wegiel J Neurobiol Aging; 2004; 25(5):663-74. PubMed ID: 15172746 [TBL] [Abstract][Full Text] [Related]
16. The role of inflammation in Alzheimer's disease. Tuppo EE; Arias HR Int J Biochem Cell Biol; 2005 Feb; 37(2):289-305. PubMed ID: 15474976 [TBL] [Abstract][Full Text] [Related]
17. Application of triple immunohistochemistry to characterize amyloid plaque-associated inflammation in brains with Alzheimer's disease. Dandrea MR; Reiser PA; Gumula NA; Hertzog BM; Andrade-Gordon P Biotech Histochem; 2001 Mar; 76(2):97-106. PubMed ID: 11440311 [TBL] [Abstract][Full Text] [Related]
18. How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Blasko I; Stampfer-Kountchev M; Robatscher P; Veerhuis R; Eikelenboom P; Grubeck-Loebenstein B Aging Cell; 2004 Aug; 3(4):169-76. PubMed ID: 15268750 [TBL] [Abstract][Full Text] [Related]
19. Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer's disease. Pihlaja R; Koistinaho J; Malm T; Sikkilä H; Vainio S; Koistinaho M Glia; 2008 Jan; 56(2):154-63. PubMed ID: 18004725 [TBL] [Abstract][Full Text] [Related]
20. Differential damage in the frontal cortex with aging, sporadic and familial Alzheimer's disease. Leuba G; Vernay A; Zimmermann V; Saini K; Kraftsik R; Savioz A Brain Res Bull; 2009 Oct; 80(4-5):196-202. PubMed ID: 19559767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]