These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9308191)

  • 1. Correlation models for childhood epidemics.
    Keeling MJ; Rand DA; Morris AJ
    Proc Biol Sci; 1997 Aug; 264(1385):1149-56. PubMed ID: 9308191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent outbreaks of childhood diseases revisited: the impact of isolation.
    Feng Z; Thieme HR
    Math Biosci; 1995; 128(1-2):93-130. PubMed ID: 7606147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models.
    Grasman J
    Math Biosci; 1998 Aug; 152(1):13-27. PubMed ID: 9727295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Space, persistence and dynamics of measles epidemics.
    Bolker B; Grenfell B
    Philos Trans R Soc Lond B Biol Sci; 1995 May; 348(1325):309-20. PubMed ID: 8577828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integer Versus Fractional Order SEIR Deterministic and Stochastic Models of Measles.
    Islam MR; Peace A; Medina D; Oraby T
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32197541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques.
    Lloyd AL
    Theor Popul Biol; 2004 Feb; 65(1):49-65. PubMed ID: 14642344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease extinction and community size: modeling the persistence of measles.
    Keeling MJ; Grenfell BT
    Science; 1997 Jan; 275(5296):65-7. PubMed ID: 8974392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of variability in infection period on the persistence and spatial spread of infectious diseases.
    Keeling MJ; Grenfell BT
    Math Biosci; 1998 Jan; 147(2):207-26. PubMed ID: 9433063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting unobserved exposures from seasonal epidemic data.
    Forgoston E; Schwartz IB
    Bull Math Biol; 2013 Sep; 75(9):1450-71. PubMed ID: 23729314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics.
    Rand DA; Wilson HB
    Proc Biol Sci; 1991 Nov; 246(1316):179-84. PubMed ID: 1685243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos and complexity in measles models: a comparative numerical study.
    Bolker B
    IMA J Math Appl Med Biol; 1993; 10(2):83-95. PubMed ID: 8370994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent epidemics in small world networks.
    Verdasca J; Telo da Gama MM; Nunes A; Bernardino NR; Pacheco JM; Gomes MC
    J Theor Biol; 2005 Apr; 233(4):553-61. PubMed ID: 15748915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical complexity in age-structured models of the transmission of the measles virus: epidemiological implications at high levels of vaccine uptake.
    Ferguson NM; Nokes DJ; Anderson RM
    Math Biosci; 1996 Dec; 138(2):101-30. PubMed ID: 8987355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemics in a population with social structures.
    Andersson H
    Math Biosci; 1997 Mar; 140(2):79-84. PubMed ID: 9046769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Travelling waves and spatial hierarchies in measles epidemics.
    Grenfell BT; Bjørnstad ON; Kappey J
    Nature; 2001 Dec; 414(6865):716-23. PubMed ID: 11742391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models.
    Tidd CW; Olsen LF; Schaffer WM
    Proc Biol Sci; 1993 Dec; 254(1341):257-73. PubMed ID: 8108458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
    Xia Y; Bjørnstad ON; Grenfell BT
    Am Nat; 2004 Aug; 164(2):267-81. PubMed ID: 15278849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.