These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9308263)

  • 1. The importance of humidity in the in vitro study of the cranium with regard to initial bone displacement after force application.
    Govaert L; Dermaut L
    Eur J Orthod; 1997 Aug; 19(4):423-30. PubMed ID: 9308263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The value of the macerated skull as a model used in orthopaedic research.
    De Clerck H; Dermaut L; Timmerman H
    Eur J Orthod; 1990 Aug; 12(3):263-71. PubMed ID: 2401333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of the centre of resistance of the upper dentition and the nasomaxillary complex. An experimental study.
    Billiet T; de Pauw G; Dermaut L
    Eur J Orthod; 2001 Jun; 23(3):263-73. PubMed ID: 11471269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A holographic study to demonstrate the initial displacements of a macerated human skull under the influence of the orthodontic force from headgear with traction in different directions].
    Zentner A; Filippidis G; Sergl HG
    Fortschr Kieferorthop; 1995 Mar; 56(2):118-26. PubMed ID: 7737611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial orthopaedic displacement compared with longitudinal displacement of the maxilla after a forward force application. An experimental study in dogs.
    de Pauw GA; Dermaut LR; Verbeeck RM
    Eur J Orthod; 1999 Dec; 21(6):671-8. PubMed ID: 10665196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A holographic study of variations in bone deformations resulting from different headgear forces in a macerated human skull.
    Zentner A; Sergl HG; Filippidis G
    Angle Orthod; 1996; 66(6):463-72. PubMed ID: 8974183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional finite element modelling of a dog skull for the simulation of initial orthopaedic displacements.
    Verrue V; Dermaut L; Verhegghe B
    Eur J Orthod; 2001 Oct; 23(5):517-27. PubMed ID: 11668871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zygomaticomaxillary suture adaptations incident to anteriorly-directed forces in rhesus monkeys.
    Nanda R; Hickory W
    Angle Orthod; 1984 Jul; 54(3):199-210. PubMed ID: 6592992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of the directions of an extraoral retractive force on the displacement of and stress distribution in palate].
    Zhang Q; Zhao ZH; Wang J; Zhao MY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2004 Sep; 35(5):680-2. PubMed ID: 15460418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial tooth displacement in vivo as a predictor of long-term displacement.
    Soenen PL; Dermaut LR; Verbeeck RM
    Eur J Orthod; 1999 Aug; 21(4):405-11. PubMed ID: 10502903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of varying the force direction on maxillary orthopedic protraction.
    Keles A; Tokmak EC; Erverdi N; Nanda R
    Angle Orthod; 2002 Oct; 72(5):387-96. PubMed ID: 12401046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Three-dimensional finite element analysis of different reactive force direction of maxillary protraction on temporomandibular joint].
    Dong R; Wang XX; Zhang WJ; Li J; Zheng DH; Zhang J
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 Dec; 48(12):740-4. PubMed ID: 24495725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of directions of maxillary protraction forces on biomechanical changes in craniofacial complex.
    Tanne K; Hiraga J; Sakuda M
    Eur J Orthod; 1989 Nov; 11(4):382-91. PubMed ID: 2591486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An experimental research on the directional control of the nasomaxillary complex by means of external force--two dimensional analysis on the sagittal plane of the craniofacial skeleton (author's transl)].
    Miki M
    Shikwa Gakuho; 1979 Aug; 79(8):1563-97. PubMed ID: 298090
    [No Abstract]   [Full Text] [Related]  

  • 15. Three-dimensional finite element analysis of the craniomaxillary complex during maxillary protraction with bone anchorage vs conventional dental anchorage.
    Yan X; He W; Lin T; Liu J; Bai X; Yan G; Lu L
    Am J Orthod Dentofacial Orthop; 2013 Feb; 143(2):197-205. PubMed ID: 23374926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraoral traction to the maxilla with face mask: a follow-up of 17 consecutively treated patients with and without cleft lip and palate.
    Sarnäs KV; Rune B
    Cleft Palate J; 1987 Apr; 24(2):95-103. PubMed ID: 3472692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The value of the centre of rotation in initial and longitudinal tooth and bone displacement.
    De Pauw G; Dermaut L; De Bruyn H
    Eur J Orthod; 2003 Jun; 25(3):285-91. PubMed ID: 12831219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of internal reaction on the maxilla by orthopedic force].
    Katada H
    Shikwa Gakuho; 1989 Aug; 89(8):1339-83. PubMed ID: 2701346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The instantaneous transverse changes in the maxilla due to different points of force application.
    Marcotte MR
    J Dent Res; 1977 May; 56(5):465-70. PubMed ID: 406296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Displacement and stress distribution by different bone-borne palatal expanders with facemask: A 3-dimensional finite element analysis.
    Park JH; Bayome M; Zahrowski JJ; Kook YA
    Am J Orthod Dentofacial Orthop; 2017 Jan; 151(1):105-117. PubMed ID: 28024761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.