These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 9309503)

  • 1. Polyurethane elastomer biostability.
    Stokes K; McVenes R; Anderson JM
    J Biomater Appl; 1995 Apr; 9(4):321-54. PubMed ID: 9309503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Dec; 79(4):836-45. PubMed ID: 16886224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo biodurability of a compliant microporous vascular graft.
    Edwards A; Carson RJ; Szycher M; Bowald S
    J Biomater Appl; 1998 Jul; 13(1):23-45. PubMed ID: 9689578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo biostability of polyether polyurethanes with fluoropolymer surface modifying endgroups: resistance to biologic oxidation and stress cracking.
    Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Dec; 79(4):827-35. PubMed ID: 16886223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking.
    Ebert M; Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biostability considerations for implantable polyurethanes.
    Coury AJ; Stokes KB; Cahalan PT; Slaikeu PC
    Life Support Syst; 1987; 5(1):25-39. PubMed ID: 3586708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo biostability of polysiloxane polyether polyurethanes: resistance to biologic oxidation and stress cracking.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Jun; 77(3):580-9. PubMed ID: 16506175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biostability of polyether polyurethanes with fluoropolymer and polyethylene oxide surface modifying endgroups; resistance to metal ion oxidation.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2007 Jan; 80(1):34-44. PubMed ID: 16958046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):633-43. PubMed ID: 15282141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo biostability of polysiloxane polyether polyurethanes: resistance to metal ion oxidation.
    Ward B; Anderson J; Ebert M; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 May; 77(2):380-9. PubMed ID: 16425243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of 'biostable' polyurethanes.
    Pinchuk L
    J Biomater Sci Polym Ed; 1994; 6(3):225-67. PubMed ID: 7986779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biostability of a non-ether polyurethane.
    Capone CD
    J Biomater Appl; 1992 Oct; 7(2):108-29. PubMed ID: 1447699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyether polyurethanes: biostable or not?
    Stokes KB
    J Biomater Appl; 1988 Oct; 3(2):228-59. PubMed ID: 3204495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes.
    Christenson EM; Dadsetan M; Hiltner A
    J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    J Biomed Mater Res; 1997 Jun; 35(3):371-81. PubMed ID: 9138071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading.
    Wiggins MJ; MacEwan M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro biostability of poly(dimethyl siloxane/hexamethylene oxide)-based polyurethane/layered silicate nanocomposites.
    Andriani Y; Morrow IC; Taran E; Edwards GA; Schiller TL; Osman AF; Martin DJ
    Acta Biomater; 2013 Sep; 9(9):8308-17. PubMed ID: 23727246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.