These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9309642)

  • 1. Metabolic profile of high intensity intermittent exercises.
    Gastin PG
    Med Sci Sports Exerc; 1997 Sep; 29(9):1274-6. PubMed ID: 9309642
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic profile of high intensity intermittent exercises.
    Tabata I; Irisawa K; Kouzaki M; Nishimura K; Ogita F; Miyachi M
    Med Sci Sports Exerc; 1997 Mar; 29(3):390-5. PubMed ID: 9139179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical velocity during continuous and intermittent exercises in children.
    Berthoin S; Baquet G; Dupont G; Van Praagh E
    Eur J Appl Physiol; 2006 Sep; 98(2):132-8. PubMed ID: 16915406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of anaerobic energy production during intense exercise.
    Bangsbo J
    Med Sci Sports Exerc; 1998 Jan; 30(1):47-52. PubMed ID: 9475643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Metabolic and ventilatory thresholds during exercise. Physiological and methodological aspects].
    Ribeiro JP
    Arq Bras Cardiol; 1995 Feb; 64(2):171-81. PubMed ID: 7575167
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of time of day on anaerobic capacity.
    Marth PD; Woods RR; Hill DW
    Percept Mot Skills; 1998 Apr; 86(2):592-4. PubMed ID: 9638760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Pulmonary and alveolar ventilation, gas exchanges and arterial blood gases during ramp exercise].
    Péronnet F; Aguilaniu B
    Rev Mal Respir; 2012 Oct; 29(8):1017-34. PubMed ID: 23101643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD.
    Burtscher M; Haider T; Domej W; Linser T; Gatterer H; Faulhaber M; Pocecco E; Ehrenburg I; Tkatchuk E; Koch R; Bernardi L
    Respir Physiol Neurobiol; 2009 Jan; 165(1):97-103. PubMed ID: 19013544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis.
    Scott CB
    J Sports Med Phys Fitness; 1997 Mar; 37(1):18-23. PubMed ID: 9190121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise.
    Dobashi K; Fujii N; Watanabe K; Tsuji B; Sasaki Y; Fujimoto T; Tanigawa S; Nishiyasu T
    Eur J Appl Physiol; 2017 Aug; 117(8):1573-1583. PubMed ID: 28527012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake.
    Messonnier L; Geyssant A; Hintzy F; Lacour JR
    Eur J Appl Physiol; 2004 Aug; 92(4-5):470-6. PubMed ID: 15138836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anaerobic threshold: over-valued or under-utilized? A novel concept to enhance lipid optimization!
    Connolly DA
    Curr Opin Clin Nutr Metab Care; 2012 Sep; 15(5):430-5. PubMed ID: 22814627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oxygen demand and energy cost of intense muscular activity in humans].
    Volkov NI; Savelev IA
    Fiziol Cheloveka; 2002; 28(4):80-93. PubMed ID: 12187886
    [No Abstract]   [Full Text] [Related]  

  • 14. Training for intense exercise performance: high-intensity or high-volume training?
    Laursen PB
    Scand J Med Sci Sports; 2010 Oct; 20 Suppl 2():1-10. PubMed ID: 20840557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises.
    Antunes AH; Alberton CL; Finatto P; Pinto SS; Cadore EL; Zaffari P; Kruel LF
    Res Q Exerc Sport; 2015; 86(3):267-73. PubMed ID: 25774975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia.
    Meeuwsen T; Hendriksen IJ; Holewijn M
    Eur J Appl Physiol; 2001 Apr; 84(4):283-90. PubMed ID: 11374111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of single sessions of low-intensity continuous and moderate-intensity intermittent exercise on blood lipids in the same endurance runners.
    Hernández-Torres RP; Ramos-Jiménez A; Torres-Durán PV; Romero-Gonzalez J; Mascher D; Posadas-Romero C; Juárez-Oropeza MA
    J Sci Med Sport; 2009 Mar; 12(2):323-31. PubMed ID: 18396101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreasing Power Output Increases Aerobic Contribution During Low-Volume Severe-Intensity Intermittent Exercise.
    Lisbôa FD; Salvador AF; Raimundo JA; Pereira KL; de Aguiar RA; Caputo F
    J Strength Cond Res; 2015 Sep; 29(9):2434-40. PubMed ID: 26308828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy metabolism during anaerobic exercise in children with cystic fibrosis and asthma.
    Boas SR; Danduran MJ; McColley SA
    Med Sci Sports Exerc; 1999 Sep; 31(9):1242-9. PubMed ID: 10487364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen consumption during recovery from prolonged submaximal cycling below the anaerobic threshold.
    Dawson B; Straton S; Randall N
    J Sports Med Phys Fitness; 1996 Jun; 36(2):77-84. PubMed ID: 8898511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.