These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020 [TBL] [Abstract][Full Text] [Related]
4. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
5. Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR. van Dorsten FA; Reese T; Gellerich JF; van Echteld CJ; Nederhoff MG; Muller HJ; van Vliet G; Nicolay K Mol Cell Biochem; 1997 Sep; 174(1-2):33-42. PubMed ID: 9309663 [TBL] [Abstract][Full Text] [Related]
6. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Zahler R; Bittl JA; Ingwall JS Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210 [TBL] [Abstract][Full Text] [Related]
7. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
8. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
9. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction. Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962 [TBL] [Abstract][Full Text] [Related]
10. Contractile and metabolic effects of increased creatine kinase activity in mouse skeletal muscle. Roman BB; Foley JM; Meyer RA; Koretsky AP Am J Physiol; 1996 Apr; 270(4 Pt 1):C1236-45. PubMed ID: 8928751 [TBL] [Abstract][Full Text] [Related]
11. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy. Gao L; Cui W; Zhang P; Jang A; Zhu W; Zhang J PLoS One; 2016; 11(9):e0162149. PubMed ID: 27606901 [TBL] [Abstract][Full Text] [Related]
12. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Banerjee B; Sharma U; Balasubramanian K; Kalaivani M; Kalra V; Jagannathan NR Magn Reson Imaging; 2010 Jun; 28(5):698-707. PubMed ID: 20395096 [TBL] [Abstract][Full Text] [Related]
13. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS. Weiss K; Bottomley PA; Weiss RG NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379 [TBL] [Abstract][Full Text] [Related]
14. Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Dzeja PP; Terzic A; Wieringa B Mol Cell Biochem; 2004; 256-257(1-2):13-27. PubMed ID: 14977167 [TBL] [Abstract][Full Text] [Related]
15. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Meyer RA; Kuchmerick MJ; Brown TR Am J Physiol; 1982 Jan; 242(1):C1-11. PubMed ID: 7058872 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study. Degani H; Laughlin M; Campbell S; Shulman RG Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712 [TBL] [Abstract][Full Text] [Related]
17. 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle. Nabuurs C; Huijbregts B; Wieringa B; Hilbers CW; Heerschap A J Biol Chem; 2010 Dec; 285(51):39588-96. PubMed ID: 20884612 [TBL] [Abstract][Full Text] [Related]
18. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy. in 't Zandt HJ; Oerlemans F; Wieringa B; Heerschap A NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium. Bottomley PA; Weiss RG Radiology; 2001 May; 219(2):411-8. PubMed ID: 11323465 [TBL] [Abstract][Full Text] [Related]
20. In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice. Nicolay K; van Dorsten FA; Reese T; Kruiskamp MJ; Gellerich JF; van Echteld CJ Mol Cell Biochem; 1998 Jul; 184(1-2):195-208. PubMed ID: 9746322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]