BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9309673)

  • 1. Oxidative phosphorylation in myocardial mitochondria 'in situ': a calorimetric study on permeabilized cardiac muscle preparations.
    Köhnke D; Schramm M; Daut J
    Mol Cell Biochem; 1997 Sep; 174(1-2):101-13. PubMed ID: 9309673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat production of quiescent ventricular trabeculae isolated from guinea-pig heart.
    Daut J; Elzinga G
    J Physiol; 1988 Apr; 398():259-75. PubMed ID: 3392673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate dependence of energy metabolism in isolated guinea-pig cardiac muscle: a microcalorimetric study.
    Daut J; Elzinga G
    J Physiol; 1989 Jun; 413():379-97. PubMed ID: 2600856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA
    J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain fatty acids increase basal metabolism and depolarize mitochondria in cardiac muscle cells.
    Ray J; Noll F; Daut J; Hanley PJ
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1495-501. PubMed ID: 11893587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Specific limitations for intracellular diffusion of ADP in cardiomyocytes].
    Belikova IuO; Kuznetsov AV; Saks VA
    Biokhimiia; 1990 Nov; 55(11):1944-57. PubMed ID: 2085614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of mitochondrial function by measuring the heat production in state 3 and state 4 respiration.
    Tamura K; Hayatsu H; Watanabe I; Nakano T; Sugawara Y; Nishii Y
    Chem Pharm Bull (Tokyo); 1989 Nov; 37(11):3033-6. PubMed ID: 2632050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The possible role of the inner mitochondrial membrane in regulating oxidative phosphorylation in cells in vivo].
    Vasil'eva EV; Belikova IuO; Liapina SA; Petrova LE; Kuznetsov AV; Perov NA; Clarke J; Saks VA
    Biokhimiia; 1993 Nov; 58(11):1742-54. PubMed ID: 8268311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolated permeabilized rat heart cells as a model to study heart bioenergetics in situ.
    Kümmel L
    Acta Univ Carol Med (Praha); 1989; 35(1-2):31-42. PubMed ID: 2491006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the subcellular localisation of calcium fraction correlating with contractile force of guinea-pig ventricular myocardium.
    Lewartowski B; Pytkowski B
    Biomed Biochim Acta; 1987; 46(8-9):S345-50. PubMed ID: 3435501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional alterations of cardiac subcellular structures during energy deficiency in relation to the metabolic state of the heart muscle cell.
    Spieckermann PG; Gebhard MM; Göring GG; Kahles H; Mezger VA; Preusse CJ; Stellwaag M
    Basic Res Cardiol; 1980; 75(1):97-104. PubMed ID: 7387601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and sex dependent effects on cardiac mitochondrial metabolism in Atlantic cod (Gadus morhua L.).
    Rodnick KJ; Gamperl AK; Nash GW; Syme DA
    J Therm Biol; 2014 Aug; 44():110-8. PubMed ID: 25086981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of cross-bridges and mitochondria in mouse cardiac muscle.
    Barclay CJ; Widén C
    Adv Exp Med Biol; 2010; 682():267-78. PubMed ID: 20824531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria.
    Fannin SW; Lesnefsky EJ; Slabe TJ; Hassan MO; Hoppel CL
    Arch Biochem Biophys; 1999 Dec; 372(2):399-407. PubMed ID: 10600182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac H11 kinase/Hsp22 stimulates oxidative phosphorylation and modulates mitochondrial reactive oxygen species production: Involvement of a nitric oxide-dependent mechanism.
    Laure L; Long R; Lizano P; Zini R; Berdeaux A; Depre C; Morin D
    Free Radic Biol Med; 2012 Jun 1-15; 52(11-12):2168-76. PubMed ID: 22542467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural and physiological changes induced by atractylate in the canine myocardium.
    Koke JR; Shug AL; Folts JD; Bittar N
    Cytobios; 1976; 17(67-68):211-29. PubMed ID: 1031664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of cardiac mitochondria in exhausted guinea pigs.
    Taylor PB; Lamb DR; Budd GC
    Eur J Appl Physiol Occup Physiol; 1976 Jun; 35(2):111-8. PubMed ID: 954728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution respirometry with multiple substrates titration in permeabilized myocardial fibers.
    Duicu O; Gheorgheosu D; Mirica N; Trancotă S; Cristina D; Firă-Mladinescu O; Muntean D
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):207-13. PubMed ID: 23077897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Bioenergetics During Ischemia and Reperfusion.
    Consolini AE; Ragone MI; Bonazzola P; Colareda GA
    Adv Exp Med Biol; 2017; 982():141-167. PubMed ID: 28551786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.