BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9309697)

  • 1. Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics.
    Maurer I; Möller HJ
    Mol Cell Biochem; 1997 Sep; 174(1-2):255-9. PubMed ID: 9309697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroleptic medications inhibit complex I of the electron transport chain.
    Burkhardt C; Kelly JP; Lim YH; Filley CM; Parker WD
    Ann Neurol; 1993 May; 33(5):512-7. PubMed ID: 8098932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation.
    Balijepalli S; Boyd MR; Ravindranath V
    Neuropharmacology; 1999 Apr; 38(4):567-77. PubMed ID: 10221760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the neurotoxic activity of typical and atypical neuroleptics: relevance to iatrogenic extrapyramidal symptoms.
    Gil-ad I; Shtaif B; Shiloh R; Weizman A
    Cell Mol Neurobiol; 2001 Dec; 21(6):705-16. PubMed ID: 12043843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel pharmacological approaches to the treatment of schizophrenia.
    Fink-Jensen A
    Dan Med Bull; 2000 Jun; 47(3):151-67. PubMed ID: 10913983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro effects of antipsychotics on mitochondrial respiration.
    Cikánková T; Fišar Z; Bakhouche Y; Ľupták M; Hroudová J
    Naunyn Schmiedebergs Arch Pharmacol; 2019 Oct; 392(10):1209-1223. PubMed ID: 31104106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroleptic treatment effect on mitochondrial electron transport chain: peripheral blood mononuclear cells analysis in psychotic patients.
    Casademont J; Garrabou G; Miró O; López S; Pons A; Bernardo M; Cardellach F
    J Clin Psychopharmacol; 2007 Jun; 27(3):284-8. PubMed ID: 17502776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative neurochemical changes associated with chronic administration of typical and atypical neuroleptics: implications in tardive dyskinesia.
    Bishnoi M; Kumar A; Chopra K; Kulkarni SK
    Indian J Exp Biol; 2007 Feb; 45(2):175-9. PubMed ID: 17375557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of neuroleptics on the GABA-induced Cl- current in rat dorsal root ganglion neurons: differences between some neuroleptics.
    Yokota K; Tatebayashi H; Matsuo T; Shoge T; Motomura H; Matsuno T; Fukuda A; Tashiro N
    Br J Pharmacol; 2002 Mar; 135(6):1547-55. PubMed ID: 11906969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroleptic-induced mitochondrial enzyme alterations in the rat brain.
    Prince JA; Yassin MS; Oreland L
    J Pharmacol Exp Ther; 1997 Jan; 280(1):261-7. PubMed ID: 8996205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro.
    Modica-Napolitano JS; Lagace CJ; Brennan WA; Aprille JR
    Arch Pharm Res; 2003 Nov; 26(11):951-9. PubMed ID: 14661862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-mediated side effects of psychopharmacological treatment.
    Maurer I; Volz HP
    Arzneimittelforschung; 2001 Oct; 51(10):785-92. PubMed ID: 11715630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Aug; 32(6):1473-8. PubMed ID: 18554768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of rat liver CYP2D in vitro and after 1-day and long-term exposure to neuroleptics in vivo-possible involvement of different mechanisms.
    Daniel WA; Haduch A; Wójcikowski J
    Eur Neuropsychopharmacol; 2005 Jan; 15(1):103-10. PubMed ID: 15572279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The central anti-serotonin activity of zotepine, a new neuroleptic, in rats.
    Shimomura K; Satoh H; Hirai O; Mori J; Tomoi M; Terai T; Katsuki S; Motoyama Y; Ono T
    Jpn J Pharmacol; 1982 Jun; 32(3):405-12. PubMed ID: 6125612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of antipsychotics on mitochondrial bioenergetics of rat ovarian theca cells.
    Elmorsy E; Al-Ghafari A; Aggour AM; Mosad SM; Khan R; Amer S
    Toxicol Lett; 2017 Apr; 272():94-100. PubMed ID: 28322891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zotepine: preclinical tests predict antipsychotic efficacy and an atypical profile.
    Needham PL; Atkinson J; Skill MJ; Heal DJ
    Psychopharmacol Bull; 1996; 32(1):123-8. PubMed ID: 8927661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A study on the pharmacological properties of atypical antipsychotic drugs: in vivo dopamine and serotonin receptor occupancy by atypical antipsychotic drugs in the rat brain].
    Matsubara R
    Hokkaido Igaku Zasshi; 1993 Jul; 68(4):570-82. PubMed ID: 7687976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological effects of zotepine and other antipsychotics on the central 5-HT2 receptors.
    Czyrak A; Jaros T; Moryl E; Maj J
    Pharmacopsychiatry; 1993 Mar; 26(2):53-8. PubMed ID: 7690975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiparkinsonian therapies and brain mitochondrial complex I activity.
    Przedborski S; Jackson-Lewis V; Fahn S
    Mov Disord; 1995 May; 10(3):312-7. PubMed ID: 7651449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.