These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9310385)

  • 61. Tryptophanyl and carboxylic acid residues in the active centre of glucoamylase I from Aspergillus niger.
    Jolley ME; Gray CJ
    Carbohydr Res; 1976 Jul; 49():361-70. PubMed ID: 9197
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New structural motif for carboxylic acid perhydrolases.
    Yin DT; Purpero VM; Fujii R; Jing Q; Kazlauskas RJ
    Chemistry; 2013 Feb; 19(9):3037-46. PubMed ID: 23325572
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase.
    Hayashi H; Inoue K; Nagata T; Kuramitsu S; Kagamiyama H
    Biochemistry; 1993 Nov; 32(45):12229-39. PubMed ID: 8218300
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A. niger protein "EstA", perhaps a new electrotactin, defines a new class of fungal esterases within the alpha/beta hydrolase fold superfamily.
    Bourne Y; Hasper AA; Chahinian H; Renault L; Juin M; de Graaff LH; Marchot P
    Chem Biol Interact; 2005 Dec; 157-158():395-6. PubMed ID: 16429533
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The catalytic serine of meta-cleavage product hydrolases is activated differently for C-O bond cleavage than for C-C bond cleavage.
    Ruzzini AC; Horsman GP; Eltis LD
    Biochemistry; 2012 Jul; 51(29):5831-40. PubMed ID: 22747426
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity.
    Nalder TD; Ashton TD; Pfeffer FM; Marshall SN; Barrow CJ
    Biochimie; 2016; 128-129():127-32. PubMed ID: 27478942
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzymatic synthesis of butyl hydroxycinnamates and their inhibitory effects on LDL-oxidation.
    Vafiadi C; Topakas E; Alissandratos A; Faulds CB; Christakopoulos P
    J Biotechnol; 2008 Feb; 133(4):497-504. PubMed ID: 18155313
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Purification and characterization of alpha-amino acid ester hydrolase from Xanthomonas rubrillineans].
    Qu F; Yi B; Ye L
    Wei Sheng Wu Xue Bao; 2012 May; 52(5):620-8. PubMed ID: 22803348
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fungal ornithine esterases: relationship to iron transport.
    Emery T
    Biochemistry; 1976 Jun; 15(13):2723-8. PubMed ID: 949472
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Carboxylic ester hydrolases from hyperthermophiles.
    Levisson M; van der Oost J; Kengen SW
    Extremophiles; 2009 Jul; 13(4):567-81. PubMed ID: 19544040
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis.
    Bollinger A; Molitor R; Thies S; Koch R; Coscolín C; Ferrer M; Jaeger KE
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32111588
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity.
    Otero S; Kristoff G
    Aquat Toxicol; 2016 Nov; 180():186-195. PubMed ID: 27723570
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A kinetic analysis of the hydrolysis of synthetic arginine substrates by arginine esterases from the venom of the gabooon adder, Bitis gabonica.
    Viljoen CC; Botes DP
    Hoppe Seylers Z Physiol Chem; 1980; 361(3):413-23. PubMed ID: 6991386
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Carboxylic ester hydrolase activity in hairless and athymic nude mouse skin.
    Ghosh MK; Mitra AK
    Pharm Res; 1990 Mar; 7(3):251-5. PubMed ID: 2339098
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Environmental role of aromatic carboxylesterases.
    Ghodke VM; Punekar NS
    Environ Microbiol; 2022 Jun; 24(6):2657-2668. PubMed ID: 34528362
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthetic substrates and inhibitors of beta-poly(L-malate)-hydrolase (polymalatase).
    Gasslmaier B; Krell CM; Seebach D; Holler E
    Eur J Biochem; 2000 Aug; 267(16):5101-5. PubMed ID: 10931193
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Whole-cell biocatalytic of Bacillus cereus WZZ006 strain to synthesis of indoxacarb intermediate: (S)-5-Chloro-1-oxo-2,3-dihydro-2-hydroxy-1H-indene-2-carboxylic acid methyl ester.
    Zhang Y; Zhang H; Cheng F; Xia Y; Zheng J; Wang Z
    Chirality; 2019 Nov; 31(11):958-967. PubMed ID: 31468608
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Investigations of tannase in Aspergillus niger].
    LIPPITSCH M
    Arch Mikrobiol; 1961; 39():209-20. PubMed ID: 13762579
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.