BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 9310393)

  • 21. Blockade of 5-HT1A receptors compensates loss of hippocampal cholinergic neurotransmission involved in working memory of rats.
    Ohno M; Watanabe S
    Brain Res; 1996 Oct; 736(1-2):180-8. PubMed ID: 8930323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Object location memory in mice: pharmacological validation and further evidence of hippocampal CA1 participation.
    Assini FL; Duzzioni M; Takahashi RN
    Behav Brain Res; 2009 Dec; 204(1):206-11. PubMed ID: 19523494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rats with scopolamine- or MK-801-induced spatial discrimination deficits in the cone field task: animal models for impaired spatial orientation performance.
    Bouger PC; van der Staay FJ
    Eur Neuropsychopharmacol; 2005 May; 15(3):331-46. PubMed ID: 15820423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross state-dependency of learning between tramadol and MK-801 in the mouse dorsal hippocampus: involvement of nitric oxide (NO) signaling pathway.
    Jafari-Sabet M; Amiri S; Ataee R
    Psychopharmacology (Berl); 2018 Jul; 235(7):1987-1999. PubMed ID: 29679289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity.
    Farber NB; Kim SH; Dikranian K; Jiang XP; Heinkel C
    Mol Psychiatry; 2002; 7(1):32-43. PubMed ID: 11803444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential effects of 5-HT3 receptor antagonism on working memory failure due to deficiency of hippocampal cholinergic and glutamatergic transmission in rats.
    Ohno M; Watanabe S
    Brain Res; 1997 Jul; 762(1-2):211-5. PubMed ID: 9262175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMDA-but not AMPA-receptor antagonists augment scopolamine-induced spatial cognitive deficit of rats in a radial maze task.
    Li HB; Matsumoto K; Tohda M; Yamamoto M; Watanabe H
    Brain Res; 1996 Jul; 725(2):268-71. PubMed ID: 8836535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting drug effects on short-term memory function using a combined delayed matching and non-matching to position task.
    Pache DM; Sewell RD; Spencer PS
    J Pharmacol Toxicol Methods; 1999 Aug; 41(4):135-41. PubMed ID: 10691017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dose-related impairment of spatial learning by intrahippocampal scopolamine: antagonism by ondansetron, a 5-HT3 receptor antagonist.
    Carli M; Luschi R; Samanin R
    Behav Brain Res; 1997 Jan; 82(2):185-94. PubMed ID: 9030400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cerebral cortical muscarinic cholinergic and N-methyl-D-aspartate receptors mediate increase in cortical blood flow elicited by chemical stimulation of periaqueductal gray matter.
    Nakai M; Maeda M
    Neuroscience; 2000; 98(3):449-57. PubMed ID: 10869839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMDA antagonists potentiate scopolamine-induced amnesic effect.
    Li HB; Matsumoto K; Tohda M; Yamamoto M; Watanabe H
    Behav Brain Res; 1997 Feb; 83(1-2):225-8. PubMed ID: 9062690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D1 dopamine and NMDA receptors interactions in the medial prefrontal cortex: modulation of spatial working memory in rats.
    Rios Valentim SJ; Gontijo AV; Peres MD; Rodrigues LC; Nakamura-Palacios EM
    Behav Brain Res; 2009 Dec; 204(1):124-8. PubMed ID: 19482047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat.
    Lüttgen M; Elvander E; Madjid N; Ogren SO
    Neuropharmacology; 2005 May; 48(6):830-52. PubMed ID: 15829255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlordiazepoxide interactions with scopolamine and dizocilpine: novel cooperative and antagonistic effects on spatial learning.
    Padlubnaya D; Galizio M; Pitts RC; Keith JR
    Behav Neurosci; 2005 Oct; 119(5):1331-8. PubMed ID: 16300439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMDA receptor involvement in spatial delayed alternation in developing rats.
    Watson DJ; Herbert MR; Stanton ME
    Behav Neurosci; 2009 Feb; 123(1):44-53. PubMed ID: 19170429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estrogen replacement enhances acquisition of a spatial memory task and reduces deficits associated with hippocampal muscarinic receptor inhibition.
    Gibbs RB
    Horm Behav; 1999 Dec; 36(3):222-33. PubMed ID: 10603286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Additive deficits in the choice accuracy of rats in the delayed non-matching to position task after cholinolytics and serotonergic lesions are non-mnemonic in nature.
    Ruotsalainen S; MacDonald E; Miettinen R; Puumala T; Riekkinen P; Sirviö J
    Psychopharmacology (Berl); 1997 Apr; 130(4):303-12. PubMed ID: 9160845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrahippocampal administration of an NMDA-receptor antagonist impairs spatial discrimination reversal learning in weanling rats.
    Watson DJ; Stanton ME
    Neurobiol Learn Mem; 2009 Jul; 92(1):89-98. PubMed ID: 19248837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ventral hippocampus and fear conditioning in rats: different anterograde amnesias of fear after infusion of N-methyl-D-aspartate or its noncompetitive antagonist MK-801 into the ventral hippocampus.
    Zhang WN; Bast T; Feldon J
    Behav Brain Res; 2001 Nov; 126(1-2):159-74. PubMed ID: 11704261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of NMDA receptors in the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice.
    Almasi-Nasrabadi M; Javadi-Paydar M; Mahdavian S; Babaei R; Sharifian M; Norouzi A; Dehpour AR
    Behav Brain Res; 2012 May; 231(1):138-45. PubMed ID: 22440233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.