BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9310431)

  • 1. Spinal cord coordination of hindlimb movements in the turtle: interlimb temporal relationships during bilateral scratching and swimming.
    Field EC; Stein PS
    J Neurophysiol; 1997 Sep; 78(3):1404-13. PubMed ID: 9310431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord coordination of hindlimb movements in the turtle: intralimb temporal relationships during scratching and swimming.
    Field EC; Stein PS
    J Neurophysiol; 1997 Sep; 78(3):1394-403. PubMed ID: 9310430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of spinal cord pathways that control hindlimb movement amplitude and interlimb coordination during voluntary swimming in turtles.
    Samara RF; Currie SN
    J Neurophysiol; 2008 Apr; 99(4):1953-68. PubMed ID: 18272877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim.
    Earhart GM; Stein PS
    J Neurophysiol; 2000 Jan; 83(1):156-65. PubMed ID: 10634862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Step, swim, and scratch motor patterns in the turtle.
    Earhart GM; Stein PS
    J Neurophysiol; 2000 Nov; 84(5):2181-90. PubMed ID: 11067964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Example of 2:1 interlimb coordination during fictive rostral scratching in a spinal turtle.
    Stein PS; McCullough ML
    J Neurophysiol; 1998 Feb; 79(2):1132-4. PubMed ID: 9463472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal control of turtle hindlimb motor rhythms.
    Stein PS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Mar; 191(3):213-29. PubMed ID: 15452660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rostral spinal cord segments are sufficient to generate a rhythm for both locomotion and scratching but affect their hip extensor phases differently.
    Hao ZZ; Meier ML; Berkowitz A
    J Neurophysiol; 2014 Jul; 112(1):147-55. PubMed ID: 24717347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically evoked fictive swimming in the low-spinal immobilized turtle.
    Juranek J; Currie SN
    J Neurophysiol; 2000 Jan; 83(1):146-55. PubMed ID: 10634861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
    Elson MS; Berkowitz A
    J Neurosci; 2016 Mar; 36(9):2819-26. PubMed ID: 26937018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmicity of spinal neurons activated during each form of fictive scratching in spinal turtles.
    Berkowitz A
    J Neurophysiol; 2001 Aug; 86(2):1026-36. PubMed ID: 11495970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three forms of the scratch reflex in the spinal turtle: movement analyses.
    Mortin LI; Keifer J; Stein PS
    J Neurophysiol; 1985 Jun; 53(6):1501-16. PubMed ID: 4009230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributions of active spinal cord neurons during swimming and scratching motor patterns.
    Mui JW; Willis KL; Hao ZZ; Berkowitz A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Dec; 198(12):877-89. PubMed ID: 22986994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming.
    Samara RF; Currie SN
    J Neurophysiol; 2007 Oct; 98(4):2223-31. PubMed ID: 17715193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5105-19. PubMed ID: 8046471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons.
    Bannatyne BA; Hao ZZ; Dyer GMC; Watanabe M; Maxwell DJ; Berkowitz A
    J Neurosci; 2020 Mar; 40(13):2680-2694. PubMed ID: 32066584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS; McCullough ML; Currie SN
    J Neurosci; 1998 Jan; 18(1):467-79. PubMed ID: 9412523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both shared and specialized spinal circuitry for scratching and swimming in turtles.
    Berkowitz A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):225-34. PubMed ID: 11976891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.