These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9311160)

  • 1. A single-channel implantable microstimulator for functional neuromuscular stimulation.
    Ziaie B; Nardin MD; Coghlan AR; Najafi K
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):909-20. PubMed ID: 9311160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs.
    Cameron T; Loeb GE; Peck RA; Schulman JH; Strojnik P; Troyk PR
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):781-90. PubMed ID: 9282470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators.
    Ghovanloo M; Najafi K
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):97-105. PubMed ID: 15651568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems.
    Ziaie B; Rose SC; Nardin MD; Najafi K
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):397-400. PubMed ID: 11327509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable micropower command receiver for telemetry battery power switching.
    Sweeney JD; Leung A; Ko WH
    Biotelem Patient Monit; 1981; 8(3):173-9. PubMed ID: 7295932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable volume monitor and miniaturized stimulator dedicated to bladder control.
    Sawan M; Arabi K; Provost B
    Artif Organs; 1997 Mar; 21(3):219-22. PubMed ID: 9148710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B; Yao J; Han S; Xie X; Li G; Wang Z
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable microstimulator for functional electrical stimulation.
    Loeb GE; Zamin CJ; Schulman JH; Troyk PR
    Med Biol Eng Comput; 1991 Nov; 29(6):NS13-9. PubMed ID: 1813741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable electronic identification, monitoring, and stimulation systems.
    Troyk PR
    Annu Rev Biomed Eng; 1999; 1():177-209. PubMed ID: 11701487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The advanced Combi 40+ cochlear implant.
    Zierhofer CM; Hochmair IJ; Hochmair ES
    Am J Otol; 1997 Nov; 18(6 Suppl):S37-8. PubMed ID: 9391589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A power efficient electronic implant for a visual cortical neuroprosthesis.
    Coulombe J; Carniguian S; Sawan M
    Artif Organs; 2005 Mar; 29(3):233-8. PubMed ID: 15725224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless front-end with power management for an implantable cardiac microstimulator.
    Lee SY; Hsieh CH; Yang CM
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):28-38. PubMed ID: 23852742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A custom designed chip to control an implantable stimulator and telemetry system for control of paralyzed muscles.
    Pourmehdi S; Strojnik P; Peckham H; Buckett J; Smith B
    Artif Organs; 1999 May; 23(5):396-8. PubMed ID: 10378927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency block of selected axons using an implantable microstimulator.
    Peng CW; Chen JJ; Lin CC; Poon PW; Liang CK; Lin KP
    J Neurosci Methods; 2004 Mar; 134(1):81-90. PubMed ID: 15102506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry.
    Suaning GJ; Lovell NH
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):248-60. PubMed ID: 11296881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An implantable RF-powered dual channel stimulator.
    Poon CW; Ko WH; Peckham PH; McNeal DR; Su N
    Biotelem Patient Monit; 1981; 8(3):180-8. PubMed ID: 7295933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacture of custom CMOS LSI for an implantable multipurpose biotelemetry system.
    Seo H; Esashi M; Matsuo T
    Front Med Biol Eng; 1989; 1(4):319-29. PubMed ID: 2486919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-mode highly efficient class-E stimulator controlled by a low-Q class-E power amplifier through duty cycle.
    Chiu HW; Lu CC; Chuang JM; Lin WT; Lin CW; Kao MC; Lin ML
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):243-55. PubMed ID: 23853324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated power controllers and RF data transmitters for totally implantable telemetry.
    Allen HV; Knutti JW; Meindl JD
    Biotelem Patient Monit; 1979; 6(3):147-59. PubMed ID: 508908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.