These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9311164)

  • 1. A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle.
    Parker KK; Wikswo JP
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):948-57. PubMed ID: 9311164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the muscle fibre semi-length under varying joint positions on the basis of non-invasively extracted motor unit action potentials.
    Schulte E; Dimitrova NA; Dimitrov GV; Rau G; Disselhorst-Klug C
    J Electromyogr Kinesiol; 2005 Jun; 15(3):290-9. PubMed ID: 15763676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique to track individual motor unit action potentials in surface EMG by monitoring their conduction velocities and amplitudes.
    Beck RB; Houtman CJ; O'Malley MJ; Lowery MM; Stegeman DF
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):622-9. PubMed ID: 15825864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions.
    Farina D; Falla D
    Muscle Nerve; 2008 May; 37(5):650-8. PubMed ID: 18085714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor unit conduction velocity distribution estimation from evoked motor responses.
    Ledoux I; García-González MT; Duchêne J; Hogrel JY
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):608-16. PubMed ID: 16602567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part II-modelling interpretation.
    Nakamura H; Yoshida M; Kotani M; Akazawa K; Moritani T
    J Electromyogr Kinesiol; 2004 Aug; 14(4):433-41. PubMed ID: 15165593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave properties of action potentials from fast and slow motor units of rats.
    Wakeling JM; Syme DA
    Muscle Nerve; 2002 Nov; 26(5):659-68. PubMed ID: 12402288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of the muscle action potential for describing the leading edge, terminal wave, and slow afterwave.
    McGill KC; Lateva ZC; Xiao S
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1357-65. PubMed ID: 11759917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of motor unit number estimation techniques.
    Major LA; Jones KE
    J Neural Eng; 2005 Jun; 2(2):17-34. PubMed ID: 15928409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume conduction in an anatomically based surface EMG model.
    Lowery MM; Stoykov NS; Dewald JP; Kuiken TA
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2138-47. PubMed ID: 15605861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of amplitude cancellation on the simulated surface electromyogram.
    Keenan KG; Farina D; Maluf KS; Merletti R; Enoka RM
    J Appl Physiol (1985); 2005 Jan; 98(1):120-31. PubMed ID: 15377649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel ideas for fast muscle action potential simulations using the line source model.
    Hammarberg B; Stålberg E
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1888-97. PubMed ID: 15543667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of muscle motor unit innervation process correlation and common drive.
    Jiang N; Parker PA; Englehart KB
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1605-14. PubMed ID: 16916095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conduction velocity of quiescent muscle fibers decreases during sustained contraction.
    Gazzoni M; Camelia F; Farina D
    J Neurophysiol; 2005 Jul; 94(1):387-94. PubMed ID: 15703224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor unit action potential topography and its use in motor unit number estimation.
    Blok JH; Van Dijk JP; Zwarts MJ; Stegeman DF
    Muscle Nerve; 2005 Sep; 32(3):280-91. PubMed ID: 15937880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichannel surface EMG: basic aspects and clinical utility.
    Zwarts MJ; Stegeman DF
    Muscle Nerve; 2003 Jul; 28(1):1-17. PubMed ID: 12811768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying motor end-plate topography by means of scanning-electromyography.
    Navallas J; Stålberg E
    Clin Neurophysiol; 2009 Jul; 120(7):1335-41. PubMed ID: 19535290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling studies on irregular motor unit potentials.
    Zalewska E; Hausmanowa-Petrusewicz I; Stålberg E
    Clin Neurophysiol; 2004 Mar; 115(3):543-56. PubMed ID: 15036049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical characteristics of motor units of the lower facial musculature revealed by means of high-density surface EMG.
    Lapatki BG; Oostenveld R; Van Dijk JP; Jonas IE; Zwarts MJ; Stegeman DF
    J Neurophysiol; 2006 Jan; 95(1):342-54. PubMed ID: 16000526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cross-correlation and phase-difference methods are not equivalent under noninvasive estimation of the motor unit propagation velocity.
    Arabadzhiev TI; Dimitrov GV; Dimitrova NA
    J Electromyogr Kinesiol; 2004 Jun; 14(3):295-305. PubMed ID: 15094143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.