BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 9312013)

  • 1. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis.
    Tournebize R; Andersen SS; Verde F; Dorée M; Karsenti E; Hyman AA
    EMBO J; 1997 Sep; 16(18):5537-49. PubMed ID: 9312013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitotic chromatin regulates phosphorylation of Stathmin/Op18.
    Andersen SS; Ashford AJ; Tournebize R; Gavet O; Sobel A; Hyman AA; Karsenti E
    Nature; 1997 Oct; 389(6651):640-3. PubMed ID: 9335509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for protein phosphatases in the cell-cycle-regulated phosphorylation of stathmin.
    Mistry SJ; Li HC; Atweh GF
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):23-9. PubMed ID: 9693097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stathmin inhibition enhances okadaic acid-induced mitotic arrest: a potential role for stathmin in mitotic exit.
    Mistry SJ; Atweh GF
    J Biol Chem; 2001 Aug; 276(33):31209-15. PubMed ID: 11418586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Op18 during spindle assembly in Xenopus egg extracts.
    Budde PP; Kumagai A; Dunphy WG; Heald R
    J Cell Biol; 2001 Apr; 153(1):149-58. PubMed ID: 11285281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stathmin-tubulin interaction gradients in motile and mitotic cells.
    Niethammer P; Bastiaens P; Karsenti E
    Science; 2004 Mar; 303(5665):1862-6. PubMed ID: 15031504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stathmin/Op18 phosphorylation is regulated by microtubule assembly.
    Küntziger T; Gavet O; Manceau V; Sobel A; Bornens M
    Mol Biol Cell; 2001 Feb; 12(2):437-48. PubMed ID: 11179426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs.
    Verde F; Labbé JC; Dorée M; Karsenti E
    Nature; 1990 Jan; 343(6255):233-8. PubMed ID: 2405278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin.
    Gadea BB; Ruderman JV
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4493-8. PubMed ID: 16537398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catastrophe-promoting activity of ectopic Op18/stathmin is required for disruption of mitotic spindles but not interphase microtubules.
    Holmfeldt P; Larsson N; Segerman B; Howell B; Morabito J; Cassimeris L; Gullberg M
    Mol Biol Cell; 2001 Jan; 12(1):73-83. PubMed ID: 11160824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Xenopus XMAP215 and its human homologue TOG proteins interact with cyclin B1 to target p34cdc2 to microtubules during mitosis.
    Charrasse S; Lorca T; Dorée M; Larroque C
    Exp Cell Res; 2000 Feb; 254(2):249-56. PubMed ID: 10640423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule dynamics and tubulin interacting proteins.
    Walczak CE
    Curr Opin Cell Biol; 2000 Feb; 12(1):52-6. PubMed ID: 10679354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules.
    Belmont LD; Mitchison TJ
    Cell; 1996 Feb; 84(4):623-31. PubMed ID: 8598048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of stathmin in the regulation of the cell cycle.
    Rubin CI; Atweh GF
    J Cell Biochem; 2004 Oct; 93(2):242-50. PubMed ID: 15368352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transitions at microtubule ends correlate with their dynamic properties in Xenopus egg extracts.
    Arnal I; Karsenti E; Hyman AA
    J Cell Biol; 2000 May; 149(4):767-74. PubMed ID: 10811818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effect of two stathmin/Op18 phosphorylation mutants on Xenopus embryo development.
    Küntziger T; Gavet O; Sobel A; Bornens M
    J Biol Chem; 2001 Jun; 276(25):22979-84. PubMed ID: 11297553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion and formation of microtubule asters: physical processes versus biochemical regulation.
    Dogterom M; Maggs AC; Leibler S
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6683-8. PubMed ID: 7624308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18.
    Andersen SS
    Trends Cell Biol; 2000 Jul; 10(7):261-7. PubMed ID: 10856928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity.
    Izumi T; Maller JL
    Mol Biol Cell; 1995 Feb; 6(2):215-26. PubMed ID: 7787247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis.
    Larsson N; Marklund U; Gradin HM; Brattsand G; Gullberg M
    Mol Cell Biol; 1997 Sep; 17(9):5530-9. PubMed ID: 9271428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.