BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9312070)

  • 1. Identification by site-directed mutagenesis of three arginines in uncoupling protein that are essential for nucleotide binding and inhibition.
    Modrianský M; Murdza-Inglis DL; Patel HV; Freeman KB; Garlid KD
    J Biol Chem; 1997 Oct; 272(40):24759-62. PubMed ID: 9312070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In the uncoupling protein (UCP-1) His-214 is involved in the regulation of purine nucleoside triphosphate but not diphosphate binding.
    Echtay KS; Bienengraeber M; Winkler E; Klingenberg M
    J Biol Chem; 1998 Sep; 273(38):24368-74. PubMed ID: 9733725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1).
    Echtay KS; Bienengraeber M; Klingenberg M
    Biochemistry; 2001 May; 40(17):5243-8. PubMed ID: 11318647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H+ transport by uncoupling protein (UCP-1) is dependent on a histidine pair, absent in UCP-2 and UCP-3.
    Bienengraeber M; Echtay KS; Klingenberg M
    Biochemistry; 1998 Jan; 37(1):3-8. PubMed ID: 9453747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions.
    Echtay KS; Winkler E; Bienengraeber M; Klingenberg M
    Biochemistry; 2000 Mar; 39(12):3311-7. PubMed ID: 10727223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single mutation in uncoupling protein of rat brown adipose tissue mitochondria abolishes GDP sensitivity of H+ transport.
    Murdza-Inglis DL; Modriansky M; Patel HV; Woldegiorgis G; Freeman KB; Garlid KD
    J Biol Chem; 1994 Mar; 269(10):7435-8. PubMed ID: 8125963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine residues are not essential for uncoupling protein function.
    Arechaga I; Raimbault S; Prieto S; Levi-Meyrueis C; Zaragoza P; Miroux B; Ricquier D; Bouillaud F; Rial E
    Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):693-700. PubMed ID: 8280067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the uncoupling protein of brown adipose tissue. Neutralization Of E190 largely abolishes pH control of nucleotide binding.
    Echtay KS; Bienengraeber M; Klingenberg M
    Biochemistry; 1997 Jul; 36(27):8253-60. PubMed ID: 9204870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the uncoupling protein by fatty acids is modulated by mutations in the C-terminal region of the protein.
    González-Barroso MM; Fleury C; Arechaga I; Zaragoza P; Levi-Meyrueis C; Raimbault S; Ricquier D; Bouillaud F; Rial E
    Eur J Biochem; 1996 Jul; 239(2):445-50. PubMed ID: 8706753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria.
    Huang SG; Klingenberg M
    Biochemistry; 1996 Jun; 35(24):7846-54. PubMed ID: 8672485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitutional mutations in the uncoupling protein-specific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport.
    Urbánková E; Hanák P; Skobisová E; Růzicka M; Jezek P
    Int J Biochem Cell Biol; 2003 Feb; 35(2):212-20. PubMed ID: 12479871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function relationships in UCP1, UCP2 and chimeras: EPR analysis and retinoic acid activation of UCP2.
    Chomiki N; Voss JC; Warden CH
    Eur J Biochem; 2001 Feb; 268(4):903-13. PubMed ID: 11179956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional study of a conserved region in the uncoupling protein UCP1: the three matrix loops are involved in the control of transport.
    González-Barroso MM; Fleury C; Jiménez MA; Sanz JM; Romero A; Bouillaud F; Rial E
    J Mol Biol; 1999 Sep; 292(1):137-49. PubMed ID: 10493863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids. A new look at old hypotheses.
    Jezek P; Orosz DE; Modriansky M; Garlid KD
    J Biol Chem; 1994 Oct; 269(42):26184-90. PubMed ID: 7929332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of purified brown adipose tissue mitochondria uncoupling protein: demonstration of separate identity of nucleotide binding and proton translocation sites by chemical probes.
    Katiyar SS; Shrago E
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2559-62. PubMed ID: 2539594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling proteins 1 and 3 are regulated differently.
    Hagen T; Zhang CY; Vianna CR; Lowell BB
    Biochemistry; 2000 May; 39(19):5845-51. PubMed ID: 10801335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of amino acids 261-269 in the brown fat uncoupling protein converts the carrier into a pore.
    González-Barroso MM; Fleury C; Levi-Meyrueis C; Zaragoza P; Bouillaud F; Rial E
    Biochemistry; 1997 Sep; 36(36):10930-5. PubMed ID: 9283084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of proton transport mediated by mitochondrial uncoupling proteins.
    Garlid KD; Jabůrek M; Jezek P
    FEBS Lett; 1998 Oct; 438(1-2):10-4. PubMed ID: 9821950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling proteins: the issues from a biochemist point of view.
    Klingenberg M; Echtay KS
    Biochim Biophys Acta; 2001 Mar; 1504(1):128-43. PubMed ID: 11239490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial uncoupling protein UCP1: a gated pore.
    Arechaga I; Ledesma A; Rial E
    IUBMB Life; 2001; 52(3-5):165-73. PubMed ID: 11798029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.