BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 9313898)

  • 21. The Xenopus laevis homologue to the neuronal cyclin-dependent kinase (cdk5) is expressed in embryos by gastrulation.
    Gervasi C; Szaro BG
    Brain Res Mol Brain Res; 1995 Nov; 33(2):192-200. PubMed ID: 8750877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurofilaments in health and disease.
    Julien JP; Mushynski WE
    Prog Nucleic Acid Res Mol Biol; 1998; 61():1-23. PubMed ID: 9752717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of neurofilament H subunit at the tail domain by CDC2 kinase dissociates the association to microtubules.
    Hisanaga S; Kusubata M; Okumura E; Kishimoto T
    J Biol Chem; 1991 Nov; 266(32):21798-803. PubMed ID: 1939202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death.
    Ohshima T; Ward JM; Huh CG; Longenecker G; Veeranna ; Pant HC; Brady RO; Martin LJ; Kulkarni AB
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):11173-8. PubMed ID: 8855328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ.
    Rudrabhatla P; Grant P; Jaffe H; Strong MJ; Pant HC
    FASEB J; 2010 Nov; 24(11):4396-407. PubMed ID: 20624930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cdc2-like kinase distinct from cdk5 is associated with neurofilaments.
    Starr R; Hall FL; Monteiro MJ
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1565-73. PubMed ID: 8799843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C-terminal neurofilament phosphorylation fosters neurofilament-neurofilament associations that compete with axonal transport.
    Lee S; Sunil N; Shea TB
    Cytoskeleton (Hoboken); 2011 Jan; 68(1):8-17. PubMed ID: 20862740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Shetty KT; Pant HC
    Biochemistry; 1998 Mar; 37(11):3931-40. PubMed ID: 9521714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation and dephosphorylation of distinct isoforms of the heavy neurofilament protein NF-H.
    Chertoff R; Soussan L; Roder H; Michaelson DM
    Cell Mol Neurobiol; 1995 Apr; 15(2):269-81. PubMed ID: 8590456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H.
    Dong DL; Xu ZS; Hart GW; Cleveland DW
    J Biol Chem; 1996 Aug; 271(34):20845-52. PubMed ID: 8702840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel axonal distribution of neurofilament-H phosphorylated at the glycogen synthase kinase 3beta-phosphorylation site in its E-segment.
    Sasaki T; Ishiguro K; Hisanaga S
    J Neurosci Res; 2009 Nov; 87(14):3088-97. PubMed ID: 19530163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5.
    Guidato S; Tsai LH; Woodgett J; Miller CC
    J Neurochem; 1996 Apr; 66(4):1698-706. PubMed ID: 8627328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide.
    Kesavapany S; Li BS; Amin N; Zheng YL; Grant P; Pant HC
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):143-53. PubMed ID: 15023357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of the tail domain of high molecular weight subunits of neurofilaments with the COOH-terminal region of tubulin and its regulation by tau protein kinase II.
    Miyasaka H; Okabe S; Ishiguro K; Uchida T; Hirokawa N
    J Biol Chem; 1993 Oct; 268(30):22695-702. PubMed ID: 8226779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topographic regulation of cytoskeletal protein phosphorylation by multimeric complexes in the squid giant fiber system.
    Grant P; Diggins M; Pant HC
    J Neurobiol; 1999 Jul; 40(1):89-102. PubMed ID: 10398074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?
    Dale JM; Garcia ML
    J Amino Acids; 2012; 2012():382107. PubMed ID: 22570767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclin-dependent kinase 5 (Cdk5) and neuron-specific Cdk5 activators.
    Tang D; Wang JH
    Prog Cell Cycle Res; 1996; 2():205-16. PubMed ID: 9552397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular localization of cyclin-dependent kinase 5 (CDK5) in mouse neuron: CDK5 is located in both nucleus and cytoplasm.
    Ino H; Chiba T
    Brain Res; 1996 Sep; 732(1-2):179-85. PubMed ID: 8891282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CDK-5-mediated neurofilament phosphorylation in SHSY5Y human neuroblastoma cells.
    Sharma M; Sharma P; Pant HC
    J Neurochem; 1999 Jul; 73(1):79-86. PubMed ID: 10386957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.