These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9314097)
1. Dot blot chemiluminescence assay for studying food protein binding to small intestinal brush border membranes in vitro. Bolte G; Knauss M; Metzdorf I; Stern M J Biochem Biophys Methods; 1997 Jun; 34(3):189-203. PubMed ID: 9314097 [TBL] [Abstract][Full Text] [Related]
2. Specific interaction of food proteins with apical membranes of the human intestinal cell lines Caco-2 and T84. Bolte G; Wolburg H; Beuermann K; Stocker S; Stern M Clin Chim Acta; 1998 Feb; 270(2):151-67. PubMed ID: 9544452 [TBL] [Abstract][Full Text] [Related]
3. Postnatal maturation of rat small intestinal brush border membranes correlates with increase in food protein binding capacity. Bolte G; Knauss M; Metzdorf I; Stern M Dig Dis Sci; 1998 Jan; 43(1):148-55. PubMed ID: 9508516 [TBL] [Abstract][Full Text] [Related]
4. Enhanced peptide-binding capacities of small intestinal brush border membranes in celiac disease. Bolte G; Seilmeier W; Wieser H; Holm K; Beuermann K; Newport B; Stern M Pediatr Res; 1999 Dec; 46(6):666-70. PubMed ID: 10590021 [TBL] [Abstract][Full Text] [Related]
5. Effect of gamma-interferon on binding of gliadin and other food peptides to the human intestinal cell line HT-29. Bendix U; Lentz S; Rothschild M; Lehmann I; Osman AA; Mothes T Clin Chim Acta; 1997 May; 261(1):69-80. PubMed ID: 9187506 [TBL] [Abstract][Full Text] [Related]
6. Peptic-tryptic digests of gliadin: contaminating trypsin but not pepsin interferes with gastrointestinal protein binding characteristics. Bolte G; Osman A; Mothes T; Stern M Clin Chim Acta; 1996 Mar; 247(1-2):59-70. PubMed ID: 8920227 [TBL] [Abstract][Full Text] [Related]
7. Food proteins and maturation of small intestinal microvillus membranes (MVM). II. Binding of gliadin hydrolysate fractions and of the gliadin peptide B3142. Stern M; Gellermann B; Belitz HD; Wieser H J Pediatr Gastroenterol Nutr; 1988; 7(1):122-7. PubMed ID: 3335972 [TBL] [Abstract][Full Text] [Related]
8. Characterization of binding between the rat small intestinal brush-border membrane and dietary proteins in the sensory mechanism of luminal dietary proteins. Hira T; Hara H; Tomita F Biosci Biotechnol Biochem; 2001 May; 65(5):1007-15. PubMed ID: 11440110 [TBL] [Abstract][Full Text] [Related]
9. Influence of goat's-milk folate-binding protein on transport of 5-methyltetrahydrofolate in neonatal-goat small intestinal brush-border-membrane vesicles. Salter DN; Blakeborough P Br J Nutr; 1988 May; 59(3):497-507. PubMed ID: 3395609 [TBL] [Abstract][Full Text] [Related]
10. Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles. Kawakami H; Dosako S; Lönnerdal B Am J Physiol; 1990 Apr; 258(4 Pt 1):G535-41. PubMed ID: 2333967 [TBL] [Abstract][Full Text] [Related]
11. Intestinal absorption of dipeptides and beta-lactam antibiotics. II. Purification of the binding protein for dipeptides and beta-lactam antibiotics from rabbit small intestinal brush border membranes. Kramer W; Gutjahr U; Girbig F; Leipe I Biochim Biophys Acta; 1990 Nov; 1030(1):50-9. PubMed ID: 2265192 [TBL] [Abstract][Full Text] [Related]
12. Food proteins and maturation of small intestinal microvillus membranes (MVM). I. Binding characteristics of cow's milk proteins and concanavalin A to MVM from newborn and adult rats. Stern M; Gellermann B J Pediatr Gastroenterol Nutr; 1988; 7(1):115-21. PubMed ID: 3335971 [TBL] [Abstract][Full Text] [Related]
13. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Kramer W; Girbig F; Gutjahr U; Kowalewski S; Adam F; Schiebler W Eur J Biochem; 1992 Mar; 204(2):923-30. PubMed ID: 1541303 [TBL] [Abstract][Full Text] [Related]
14. Quantitative determination of the lectin binding capacity of small intestinal brush-border membrane. An enzyme linked lectin sorbent assay (ELLSA). Hendriks HG; Koninkx JF; Draaijer M; van Dijk JE; Raaijmakers JA; Mouwen JM Biochim Biophys Acta; 1987 Dec; 905(2):371-5. PubMed ID: 3318929 [TBL] [Abstract][Full Text] [Related]
15. Intestinal digestive resistance of immunodominant gliadin peptides. Hausch F; Shan L; Santiago NA; Gray GM; Khosla C Am J Physiol Gastrointest Liver Physiol; 2002 Oct; 283(4):G996-G1003. PubMed ID: 12223360 [TBL] [Abstract][Full Text] [Related]
16. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase. Kramer W; Dechent C; Girbig F; Gutjahr U; Neubauer H Biochim Biophys Acta; 1990 Nov; 1030(1):41-9. PubMed ID: 1979919 [TBL] [Abstract][Full Text] [Related]
17. Uptake of methylchlorpromazine by brush-border membrane vesicles from rat small intestine. Saitoh H; Miyazaki K Biol Pharm Bull; 1997 Jun; 20(6):662-6. PubMed ID: 9212986 [TBL] [Abstract][Full Text] [Related]
18. Sodium-dependent D-glucose transport in brush-border membrane vesicles from isolated rat small intestinal villus and crypt epithelial cells. Freeman HJ; Johnston G; Quamme GA Can J Physiol Pharmacol; 1987 Jun; 65(6):1213-9. PubMed ID: 3621069 [TBL] [Abstract][Full Text] [Related]
19. Visualization of lactotransferrin brush-border receptors by ligand-blotting. Mazurier J; Montreuil J; Spik G Biochim Biophys Acta; 1985 Dec; 821(3):453-60. PubMed ID: 3000447 [TBL] [Abstract][Full Text] [Related]
20. Change in small intestinal brush border membranes of rats following methotrexate administration. Takeuchi H; Kosakai Y; Tsurui K; Hasegawa K; Horie T; Awazu S Pharmacol Toxicol; 1989 Oct; 65(4):269-73. PubMed ID: 2587509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]