These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9314116)

  • 1. Inhibition and substrate competition kinetics in analysis of porcine thyroid alkaline ribonuclease's specificity toward synthetic RNA's and tRNA.
    Crute BE; Markstein JA; Kull FJ
    J Enzyme Inhib; 1997 Aug; 12(3):205-26. PubMed ID: 9314116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a novel poly(U), poly(C) ribonuclease from Saccharomyces cerevisiae.
    Lalioti VS; Ballesta JP; Fragoulis EG
    Biochim Biophys Acta; 1997 Sep; 1342(1):62-72. PubMed ID: 9366271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-stranded RNA: the variables controlling its degradation by RNases.
    Yakovlev GI; Sorrentino S; Moiseyev GP; Libonati M
    Nucleic Acids Symp Ser; 1995; (33):106-8. PubMed ID: 8643340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of potential 3' processing nucleases using synthetic tRNA precursors.
    Ghosh RK; Deutscher MP
    Nucleic Acids Res; 1978 Oct; 5(10):3831-42. PubMed ID: 364419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-strand-preferring RNases degrade double-stranded RNAs by destabilizing its secondary structure.
    Yakovlev G; Moiseyev GP; Sorrentino S; De Prisco R; Libonati M
    J Biomol Struct Dyn; 1997 Oct; 15(2):243-50. PubMed ID: 9399152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site.
    Kikovska E; Brännvall M; Kufel J; Kirsebom LA
    Nucleic Acids Res; 2005; 33(6):2012-21. PubMed ID: 15817565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification from normal human plasma and biochemical characterization of a ribonuclease specific for poly(C) and poly(U).
    Leimoni ID; Sideris DC; Fragoulis EG
    Arch Biochem Biophys; 2003 May; 413(1):83-90. PubMed ID: 12706344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ribonuclease inhibitors from porcine thyroid and liver are slow, tight-binding inhibitors of bovine pancreatic ribonuclease A.
    Turner PM; Lerea KM; Kull FJ
    Biochem Biophys Res Commun; 1983 Aug; 114(3):1154-60. PubMed ID: 6615510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of the uridine-preferring specificity of RNase PL3.
    Vicentini AM; Kote-Jarai Z; Hofsteenge J
    Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and some properties of a specific nuclease which cleaves transfer RNA precursors from the posterior silk gland of Bombyx mori.
    Tsutsumi K; Tsutsumi-Majima R; Shimura K
    J Biochem; 1978 Jul; 84(1):169-77. PubMed ID: 29036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of poly C preferential ribonuclease from chicken liver.
    Hayano K; Iwama M; Sakamoto H; Watanabe H; Sanda A; Ohgi K; Irie M
    J Biochem; 1993 Jul; 114(1):156-62. PubMed ID: 8407869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porcine thyroid cytosolic, latent, alkaline, ribonuclease: does an acidification step during purification alter the enzyme's properties?
    Rutherford KD; Button EE; Kull FJ
    Comp Biochem Physiol B; 1983; 75(3):545-52. PubMed ID: 6884007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids.
    Freist W; Cramer F
    Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticodon-dependent aminoacylation of RNA minisubstrate by lysyl-tRNA synthetase.
    Khvorova AM; Motorin YuA ; Wolfson AD; Gladilin KL
    FEBS Lett; 1992 Dec; 314(3):256-8. PubMed ID: 1281788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid Ribonucleic Acid-Iodopeptides. Comparison of Tyrosyl-Complex II and Tyrosyl-tRNA.
    Fisher PA; Goodman JG; Kull FJ
    Biochemistry; 1976 Sep; 15(18):4065-70. PubMed ID: 9130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity.
    Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ
    J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of a base-specific ribonuclease Ru from Rhizopus niveus.
    Horitsu H; Takihi N; Sugiura M; Tomoyeda M
    Can J Biochem; 1980 Jun; 58(6):489-93. PubMed ID: 6168347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the 3'-end of tRNA with ribonuclease P RNA.
    Oh BK; Pace NR
    Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of acid ribonucleases in human serum and leukocytes.
    Akagi K; Yamanaka M; Murai K; Omae T
    Cancer Res; 1978 Jul; 38(7):2163-7. PubMed ID: 26464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Glu-60 in the specificity of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) towards dinucleotides, poly(A) and RNA.
    Bastyns K; Froeyer M; Volckaert G; Engelborghs Y
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):737-42. PubMed ID: 7516656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.