These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9315280)

  • 21. The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking.
    Castilho RF; Kowaltowski AJ; Vercesi AE
    J Bioenerg Biomembr; 1996 Dec; 28(6):523-9. PubMed ID: 8953384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mersalyl prevents the Tl
    Korotkov SM; Konovalova SA; Nesterov VP; Brailovskaya IV
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1716-1721. PubMed ID: 29223393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.
    Takeyama N; Matsuo N; Tanaka T
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):719-25. PubMed ID: 7691056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dehydroepiandrosterone and alpha-estradiol limit the functional alterations of rat brain mitochondria submitted to different experimental stresses.
    Morin C; Zini R; Simon N; Tillement JP
    Neuroscience; 2002; 115(2):415-24. PubMed ID: 12421607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria.
    Schild L; Gellerich FN
    Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dose-related inversion of cinnarizine and flunarizine effects on mitochondrial permeability transition.
    Elimadi A; Bouillot L; Sapena R; Tillement JP; Morin D
    Eur J Pharmacol; 1998 May; 348(1):115-21. PubMed ID: 9650838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The natural antioxidant otobaphenol delays the permeability transition of mitochondria and induces their aggregation.
    Lemeshko VV; Lopez LF; Solano S; Torres R
    Antioxid Redox Signal; 2003 Jun; 5(3):281-90. PubMed ID: 12880483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of all-trans-retinoic acid on the permeability transition and bioenergetic functions of rat liver mitochondria in combination with endoxifen.
    Ribeiro MP; Santos AE; Santos MS; Custódio JB
    Life Sci; 2013 Jul; 93(2-3):96-107. PubMed ID: 23764110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protective effect of trifluoperazine on the mitochondrial damage induced by Ca2+ plus prooxidants.
    Pereira RS; Bertocchi AP; Vercesi AE
    Biochem Pharmacol; 1992 Nov; 44(9):1795-801. PubMed ID: 1449534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro.
    Du G; Mouithys-Mickalad A; Sluse FE
    Free Radic Biol Med; 1998 Dec; 25(9):1066-74. PubMed ID: 9870560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate.
    Korotkov SM; Emelyanova LV; Konovalova SA; Brailovskaya IV
    Toxicol In Vitro; 2015 Aug; 29(5):1034-41. PubMed ID: 25910914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of spermine on mitochondrial glutathione release.
    Rigobello MP; Toninello A; Siliprandi D; Bindoli A
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1276-81. PubMed ID: 8352785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid.
    Hermes-Lima M; Castilho RF; Valle VG; Bechara EJ; Vercesi AE
    Biochim Biophys Acta; 1992 Dec; 1180(2):201-6. PubMed ID: 1463771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production.
    Aronis A; Komarnitsky R; Shilo S; Tirosh O
    Antioxid Redox Signal; 2002 Aug; 4(4):647-54. PubMed ID: 12230877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The participation of pyridine nucleotides redox state and reactive oxygen in the fatty acid-induced permeability transition in rat liver mitochondria.
    Catisti R; Vercesi AE
    FEBS Lett; 1999 Dec; 464(1-2):97-101. PubMed ID: 10611491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can trifluoperazine protect mitochondria against reactive oxygen species-induced damage?
    Pereira Rde D; Hermes-Lima M
    Eur J Drug Metab Pharmacokinet; 1996; 21(4):281-4. PubMed ID: 9074891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2+-triggered permeability transition of mitochondria.
    Parvez S; Winkler-Stuck K; Hertel S; Schönfeld P; Siemen D
    Biochim Biophys Acta; 2010; 1797(6-7):1245-50. PubMed ID: 20144882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of hepatotoxicity by sanguinarine is associated with oxidation of protein thiols and disturbance of mitochondrial respiration.
    Choy CS; Cheah KP; Chiou HY; Li JS; Liu YH; Yong SF; Chiu WT; Liao JW; Hu CM
    J Appl Toxicol; 2008 Nov; 28(8):945-56. PubMed ID: 18548746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial permeability transition is altered in early stages of carcinogenesis of 2-acetylaminofluorene.
    Klöhn PC; Bitsch A; Neumann HG
    Carcinogenesis; 1998 Jul; 19(7):1185-90. PubMed ID: 9683176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential requirements of calcium for oxoglutarate dehydrogenase and mitochondrial nitric-oxide synthase under hypoxia: impact on the regulation of mitochondrial oxygen consumption.
    Solien J; Haynes V; Giulivi C
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):111-7. PubMed ID: 15972265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.