These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Immune signal transduction in leishmaniasis from natural to artificial systems: role of feedback loop insertion. Mol M; Patole MS; Singh S Biochim Biophys Acta; 2014 Jan; 1840(1):71-9. PubMed ID: 23994140 [TBL] [Abstract][Full Text] [Related]
43. Ontological integration of data models for cell signaling pathways by defining a factor of causality called 'signal'. Takai-Igarashi T; Mizoguchi R Genome Inform; 2004; 15(2):255-65. PubMed ID: 15706511 [TBL] [Abstract][Full Text] [Related]
44. Boolean network approach to negative feedback loops of the p53 pathways: synchronized dynamics and stochastic limit cycles. Ge H; Qian M J Comput Biol; 2009 Jan; 16(1):119-32. PubMed ID: 19119996 [TBL] [Abstract][Full Text] [Related]
45. Emergent properties of networks of biological signaling pathways. Bhalla US; Iyengar R Science; 1999 Jan; 283(5400):381-7. PubMed ID: 9888852 [TBL] [Abstract][Full Text] [Related]
46. Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Vera J; Rath O; Balsa-Canto E; Banga JR; Kolch W; Wolkenhauer O Mol Biosyst; 2010 Nov; 6(11):2174-91. PubMed ID: 20717620 [TBL] [Abstract][Full Text] [Related]
47. A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. Spitzer NC J Neurobiol; 1991 Oct; 22(7):659-73. PubMed ID: 1722506 [No Abstract] [Full Text] [Related]
48. Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters. Rhee A; Cheong R; Levchenko A Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17330-5. PubMed ID: 25404303 [TBL] [Abstract][Full Text] [Related]
49. Approximations and their consequences for dynamic modelling of signal transduction pathways. Millat T; Bullinger E; Rohwer J; Wolkenhauer O Math Biosci; 2007 May; 207(1):40-57. PubMed ID: 17070871 [TBL] [Abstract][Full Text] [Related]
50. Dynamic pathway modeling of signal transduction networks: a domain-oriented approach. Conzelmann H; Gilles ED Methods Mol Biol; 2008; 484():559-78. PubMed ID: 18592201 [TBL] [Abstract][Full Text] [Related]
51. [Intercellular communication]. Dobrescu G Rev Med Chir Soc Med Nat Iasi; 1998; 102(3-4):17-24. PubMed ID: 10756839 [TBL] [Abstract][Full Text] [Related]
52. Synthesizing artificial devices that redirect cellular information at will. Liu Y; Li J; Chen Z; Huang W; Cai Z Elife; 2018 Jan; 7():. PubMed ID: 29319503 [TBL] [Abstract][Full Text] [Related]
53. Activation of ion transport pathways by changes in cell volume. Sarkadi B; Parker JC Biochim Biophys Acta; 1991 Dec; 1071(4):407-27. PubMed ID: 1721542 [TBL] [Abstract][Full Text] [Related]
54. A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts. Blüthgen N; Legewie S; Kielbasa SM; Schramme A; Tchernitsa O; Keil J; Solf A; Vingron M; Schäfer R; Herzel H; Sers C FEBS J; 2009 Feb; 276(4):1024-35. PubMed ID: 19154344 [TBL] [Abstract][Full Text] [Related]
56. Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. Liu G; Swihart MT; Neelamegham S Bioinformatics; 2005 Apr; 21(7):1194-202. PubMed ID: 15531606 [TBL] [Abstract][Full Text] [Related]