These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9315853)

  • 21. Local stability identification and the role of key acidic amino acid residues in staphylococcal nuclease unfolding.
    Chen HM; Chan SC; Leung KW; Wu JM; Fang HJ; Tsong TY
    FEBS J; 2005 Aug; 272(15):3967-74. PubMed ID: 16045767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease.
    Shortle D; Stites WE; Meeker AK
    Biochemistry; 1990 Sep; 29(35):8033-41. PubMed ID: 2261461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guanidine hydrochloride denaturation studies of mutant forms of staphylococcal nuclease.
    Shortle D
    J Cell Biochem; 1986; 30(4):281-9. PubMed ID: 3519625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the subtle conformational state of N138ND2-Q106O hydrogen bonding deletion mutant (Asn138Asp) of staphylococcal nuclease using time of flight mass spectrometry with limited proteolysis.
    Huang S; Zou X; Guo P; Zhong L; Peng J; Jing G
    Arch Biochem Biophys; 2005 Feb; 434(1):86-92. PubMed ID: 15629112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines.
    Holder JB; Bennett AF; Chen J; Spencer DS; Byrne MP; Stites WE
    Biochemistry; 2001 Nov; 40(46):13998-4003. PubMed ID: 11705391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in stability upon charge reversal and neutralization substitution in staphylococcal nuclease are dominated by favorable electrostatic effects.
    Schwehm JM; Fitch CA; Dang BN; García-Moreno E B; Stites WE
    Biochemistry; 2003 Feb; 42(4):1118-28. PubMed ID: 12549934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and energetic differences between insertions and substitutions in staphylococcal nuclease.
    Sondek J; Shortle D
    Proteins; 1992 Apr; 13(2):132-40. PubMed ID: 1620695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Higher-order packing interactions in triple and quadruple mutants of staphylococcal nuclease.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14012-9. PubMed ID: 11705393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions.
    Frenz CM
    Proteins; 2005 May; 59(2):147-51. PubMed ID: 15723345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The phase transition between a compact denatured state and a random coil state in staphylococcal nuclease is first-order.
    Gittis AG; Stites WE; Lattman EE
    J Mol Biol; 1993 Aug; 232(3):718-24. PubMed ID: 8355268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease.
    Green SM; Shortle D
    Biochemistry; 1993 Sep; 32(38):10131-9. PubMed ID: 8399139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and physical characterization of random insertions in Staphylococcal nuclease.
    Nguyen DM; Schleif RF
    J Mol Biol; 1998 Oct; 282(4):751-9. PubMed ID: 9743624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin.
    Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE
    Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accommodation of single amino acid insertions by the native state of staphylococcal nuclease.
    Sondek J; Shortle D
    Proteins; 1990; 7(4):299-305. PubMed ID: 2381904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer of a beta-turn structure to a new protein context.
    Hynes TR; Kautz RA; Goodman MA; Gill JF; Fox RO
    Nature; 1989 May; 339(6219):73-6. PubMed ID: 2716830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.