These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9316401)

  • 1. Polarized distribution of L-type calcium channels in early sea urchin embryos.
    Dale B; Yazaki I; Tosti E
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C822-5. PubMed ID: 9316401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo.
    Masui M; Kominami T
    Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole.
    Yazaki I; Dale B; Tosti E
    Dev Biol; 1999 Aug; 212(2):503-10. PubMed ID: 10433838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromeres are required for normal vegetal plate specification in sea urchin embryos.
    Ransick A; Davidson EH
    Development; 1995 Oct; 121(10):3215-22. PubMed ID: 7588056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
    Khaner O; Wilt F
    Development; 1991 Jul; 112(3):881-90. PubMed ID: 1935693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres.
    Khaner O; Wilt F
    Development; 1990 Jul; 109(3):625-34. PubMed ID: 2401215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of calcium elevation in the micromeres of sea urchin embryos.
    Yazaki I; Abe M; Santella L; Koyama Y
    Biol Cell; 2004 Mar; 96(2):153-67. PubMed ID: 15050370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone modifications accompanying the onset of developmental commitment.
    Chambers SA; Shaw BR
    Dev Biol; 1987 Dec; 124(2):523-31. PubMed ID: 3678612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maternal control of early patterning in sea urchin embryos.
    Kipryushina YO; Yakovlev KV
    Differentiation; 2020; 113():28-37. PubMed ID: 32371341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of cell fate in sea urchin embryos.
    Livingston BT; Wilt FH
    Bioessays; 1990 Mar; 12(3):115-9. PubMed ID: 2182005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage-specific development of calcium currents during embryogenesis.
    Simoncini L; Block ML; Moody WJ
    Science; 1988 Dec; 242(4885):1572-5. PubMed ID: 2849207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins.
    Poon J; Fries A; Wessel GM; Yajima M
    Nat Commun; 2019 Aug; 10(1):3779. PubMed ID: 31439829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
    Izumi-Kurotani A; Kiyomoto M
    Adv Space Biol Med; 2003; 9():83-99. PubMed ID: 14631630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryos.
    Farach MC; Valdizan M; Park HR; Decker GL; Lennarz WJ
    Dev Biol; 1987 Aug; 122(2):320-31. PubMed ID: 3297856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell movements during the initial phase of gastrulation in the sea urchin embryo.
    Burke RD; Myers RL; Sexton TL; Jackson C
    Dev Biol; 1991 Aug; 146(2):542-57. PubMed ID: 1864470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
    Kenny AP; Kozlowski D; Oleksyn DW; Angerer LM; Angerer RC
    Development; 1999 Dec; 126(23):5473-83. PubMed ID: 10556071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.